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Abstract

The ability to follow the gaze of another human plays a crit-
ical role in cognitive development. Infants as young as 12
months old have been shown to follow the gaze of adults. Re-
cent experimental results indicate that gaze following is not
merely an imitation of head movement. We propose that chil-
dren learn a probabilistic model of the consequences of their
movements, and later use this learned model of self as a surro-
gate for another human. We introduce a Bayesian model where
gaze following occurs as a consequence of goal inference in a
learned probabilistic graphical model. Bayesian inference over
this learned model provides both an estimate of another’s fix-
ation location and the appropriate action to follow their gaze.
The model can be regarded as a probabilistic instantiation of
Meltzoff’s “Like Me” hypothesis. We present simulation re-
sults based on a nonparametric Gaussian process implemen-
tation of the model, and compare the model’s performance to
infant gaze following results.
Keywords: cognitive development; machine learning; artifi-
cial intelligence; goal inference; Bayesian modeling; gaze fol-
lowing.

Introduction
Gaze following plays an important role in cognitive develop-
ment. Following the gaze of an adult, for example, allows a
child to jointly attend to an object, learn its name and other
properties, as well as learn useful actions to perform on the
object through imitation. It has been shown that children as
young as 12 months old can follow the gaze of an adult and
engage in joint attention (Brooks & Meltzoff, 2002).

Recent results have shown that gaze following is not
merely an imitation of head movement. For example, 14-
and 18-month olds do not follow the gaze of an adult who
is wearing a blindfold, although they follow gaze if the adult
wears the same band as a headband. This suggests that these
children do not follow gaze because they are aware of the
consequences of wearing a blindfold (i.e., occlusion) and
unlike 12-month olds, make the inference that the adult is
not looking at an object. This observation is closely related
to Meltzoff’s “Like me” hypothesis (Meltzoff, 2005) which
states that self-experience plays an important role in making
inferences about the internal states of others. In particular,
in the case of the blindfold experiment, self-experience with
own eye closure and occluders may influence gaze following
behavior. To test this hypothesis, Meltzoff and Brooks
provided one group of 12-month olds with self-experience
with an opaque blindfold while two other groups either had
no self-experience or had self-experience with a windowed
blindfold. On seeing an adult with a blindfold turn towards
an object, most of the children who had had self-experience
with blindfolds did not turn to the object while the other

two groups did (Meltzoff & Brooks, 2008). These results
suggest that (a) gaze following involves an inference of
the underlying intention or goal of the head movement,
and (b) self-experience plays a major role in learning the
consequences of intentions and related actions.

In this paper, we propose a new model for gaze following
and joint attention that can be viewed as a probabilistic instan-
tiation of the “Like me” hypothesis. The model itself is gen-
eral and can be applied to modeling other forms of goal-based
imitation, but we focus here on gaze following. In the fol-
lowing section, we derive our framework for gaze following
based on probabilistic graphical models. We describe how a
child could learn a probabilistic model of the consequences of
their own head movements, and later use this learned model
to interpret the actions of another person. Bayesian inference
over the learned graphical model provides both an estimate
of another’s fixation location and the appropriate action to
move one’s own gaze for joint attention. For the simulations,
a model based on Gaussian process regression was used to
learn the mapping between goals, actions, and their sensory
consequences. We present preliminary results comparing the
model to infant gaze following results and discuss the appli-
cability of the proposed framework for understanding other
forms of goal-based imitation and sensorimotor planning.

A Bayesian Model for Gaze-Following
In the following section, we develop and explain our model
for gaze-following as goal inference. We begin with a sim-
plified explanation of our graphical model, and then give an
overview of the computational components.

Hypothesis
Our hypothesis is the following: humans learn a goal-directed
mechanism for planning gaze movements. A goal location,
provided by either internal or external stimuli, combined with
the current state, determines an action. This action, again in
conjunction with the current state, determines the final state.
We represent this mechanism with the graphical model shown
in Figure 1(a) where G is the goal, A is the action, Xi is the
current state, and Xf is the final state. In the context of gaze
following, the goal is a desired fixation location, the action
is a vector of motor commands, and the state represents head
position and orientation.

With our proposed model, an artificial agent can both plan
future movements given desired fixation points and determine
fixation points given observed head poses. Both of these cor-
respond to performing inference over the graphical model.



G

A

Xi Xf

(a) Basic Model

G

AB

Xi Xf

(b) Model with Blindfold Ex-
perience

Gm

AmBm

Xm
i Xm

f

A

G

B

Xi Xf

change of coords.

(c) Gaze following model

Figure 1: Graphical models for controlling gaze: (a) contains the
basic model which relates the different variables, (b) demonstrates
the influence of blindfold experience on the model, and (c) shows
the combined graphical models for following the gaze of a mentor.
Shaded variables demonstrate observed variables. The darker shad-
ing indicates that B is an observed discrete variable, while the rest
of the nodes are continuous.

Furthermore, through the “Like me” hypothesis, a human can
apply their model to another person in order to infer where
they are looking and then translate that location back to their
own model in order to fixate on the same location, as is nec-
essary for gaze following (Figure 1(c)).

Computational Model
We begin by showing how an agent can learn the mapping be-
tween goals, states, and actions in order to plan how to fixate
on a specific goal location. The agent first learns a transi-
tion model, f , (e.g., through exploration or “body babbling”)
which translates an initial position, xi, and an action, a, to a
final head position, xf ,

xf = f (xi,a) + ν , ν ∼N (0,Σν ), (1)

where N (µ,Σ) signifies the normal distribution with mean µ

and covariance matrix Σ. The learned transition model can
in turn be used to learn a policy function, π , which maps the
initial head position and a goal location g to an action

a = π(xi,g) + υ , υ ∼N (0,Συ ). (2)

This function essentially determines the rotation required to
turn the head from its current position to face the goal.

We use two separate Gaussian processes (GPs)
(Rasmussen & Williams, 2006), GPπ and GPf , to learn
these nonlinear functions. GPs are commonly used in
machine learning to infer a latent function h(·) from noisy
observations yi = h(xi) + ν , ν ∼ N (0,σ2

ν ) because they are

both flexible and robust. First, they are nonparametric so
they do not limit the set of functions that h can be chosen
from. Second, they estimate a probability distribution over
functions instead of choosing a single most-likely candidate
function, allowing all plausible functions to be incorporated
into the estimation process and reducing model bias. For
these reasons, GPs are effective with small numbers of
training samples, increasing their biological plausibility.
We now show how we use these GPs for planning, goal
inference, and gaze-following.

Goal-directed Planning GPs are trained via supervised
learning: given a training dataset with noisy labels, the GP
learns the functional mapping between the input data and the
labels (output). The training data itself could be obtained, for
instance, through a reinforcement-based paradigm that com-
bines exploration of the goal-action-state space for training
the transition GP with selection of data from successful trials
for training the policy GP (see (Verma & Rao, 2006) for re-
lated ideas). After training, it is simple for the agent to fixate
on a goal location. We assume that the agent knows its current
state xi and the goal g. Given these, the agent uses its learned
distribution over functions, GPπ , to compute a probability dis-
tribution over actions, p(a) =N (µa,Σa). This distribution can
then be passed through GPf to estimate the probability of the
resulting state, p(xf ) ≈ N (µxf ,Σxf ).1 Thus, our model pro-
vides us both with the final position and an estimate of the
uncertainty in the prediction.

Goal Inference Through the use of our computational
model, it is also possible to infer the goal of a head movement
given observations of the starting and ending head poses, xi
and xf , respectively. To accomplish this, the agent must be
able to recover the inputs to each GP given the outputs. Fortu-
nately, results from (Rasmussen & Ghahramani, 2003) allow
us to estimate a distribution over the inputs given the outputs.
As such, we can infer a distribution over actions given xi and
xf and then use this to estimate a distribution over goals.

Gaze Following Goal-directed gaze following is accom-
plished through our use of the “Like me” hypothesis. The
agent learns a model of itself and assumes that a mentor uses
this same model. The agent observes the starting and ending
states (head poses) of a mentor and then infers the goal loca-
tion of the mentor, gm, by inferring what it would be looking
at if it were in the mentor’s position. After inferring the men-
tor’s goal, the agent transforms that goal into its own coordi-
nate frame and then infers how to fixate on that goal. For this
paper, we assume the agent has acquired the ability to trans-
form between coordinate frames through prior experience.

Blindfold Experiments
To demonstrate the robustness and plausibility of this model,
we recreate an experiment from (Meltzoff & Brooks, 2008)
and test our model on it. We incorporate a blindfold variable,

1This is an approximation because, in general, a Gaussian passed
through a nonlinear function does not remain Gaussian.



B ∈ {0,1}, (Figure 1(b)) and allow the agent to learn the ef-
fects of being blindfolded. Our model learns a new Gaussian
process (GPb=1

π , to use in place of GPπ ) for when the agent is
blindfolded. When the blindfold is in place regardless of the
goal chosen, no action leads to that goal location being fix-
ated. Goals in this case are not causally linked to states (head
poses) or actions. The agent can learn this and then apply
this knowledge to a mentor agent to infer that the mentor’s
goal is random in relation to the observed head movement,
if it is blindfolded. However, if this alternate Gaussian pro-
cess is not learned, the agent does not know anything about
the blindfold and follows the mentor’s head movement even
if the mentor is blindfolded.

Technical Details
Gaussian Processes
We briefly introduce the notation and theory of Gaussian pro-
cesses (GPs). More detail can be found in (Rasmussen &
Williams, 2006). Formally, a Gaussian process is a collection
of random variables, any finite number of which have a joint
Gaussian distribution. The random variables represent the
value of the function h(x) at location x. A GP is fully specified
by its mean function m(·) and covariance function k(·, ·).We
write the Gaussian process as h(x) ∼ GPh(mh(x),kh(x,x′)),
to denote the fact that the GP learns a probability distribu-
tion over functions. GPs place a prior p(h) directly on the
space of functions. We use a prior mean function mh = 0 and
use the squared exponential (SE) kernel as our prior covari-
ance function kh(xp,xq) = α2exp

(
− 1

2 (xp−xq)ᵀΛ−1(xp−xq)
)
,

where xp,xq ∈�
D, Λ = diag([`2

1, ..., `
2
D]) is a diagonal matrix

of squared characteristic length-scales, and α2 is the variance
of the latent function h.2 Thus, the posterior predictive dis-
tribution of the function value h∗ = h(x∗), for an arbitrary test
input x∗, is Gaussian with mean and variance

mh(x∗) = �h[h∗] = kᵀ∗ (K + σ
2
ε I)−1y = kᵀ∗β , (3)

σ
2
h (x∗) = varh[h∗] = k∗∗−kᵀ∗ (K + σ

2
ε I)−1k∗, (4)

respectively, with k∗ = k(X,x∗), k∗∗ = k(x∗,x∗), β = (K +

σ2
ε I)−1y, K is the kernel matrix with Ki j = k(xi,x j), X =

[x1, ...,xn] are the training inputs, and y = [y1, ...,yn] are the
training targets.

It is also possible to predict with GPs when the test input
x∗ ∼N (µ,Σ) is uncertain. This corresponds to seeking

p(h(x∗)|µ,Σ) =

∫
p(h(x∗)|x∗)p(x∗|µ,Σ)dx∗. (5)

For the SE kernel, we can compute the mean µ∗ and variance
σ2
∗ of equation 5 in closed form, following (Deisenroth, Hu-

ber, & Hanebeck, 2009; Quiñonero-Candela, Girard, Larsen,
2We determine the hyperparameters, θ , of each GP by max-

imizing the marginal likelihood p(y|X,θ ) with respect to the hy-
perparameters, which is equivalent to maximizing the posterior
distribution over the hyperparameters for a flat hyperprior p(θ ).
This optimization was done using the gpml software, available at
http://www.gaussianprocess.org.

& Rasmussen, 2003).

µ∗ = �x∗ [�h[h(x∗)|x∗]|µ,Σ] = �x∗ [mh(x∗)|µ,Σ] (6)

σ
2
∗ = �x∗ [mh(x∗)2|µ,Σ] +�x∗ [σ

2
h (x∗)|µ,Σ]−µ

2
∗ (7)

Note that this is a Gaussian approximation to the true dis-
tribution of p(h(x∗)|µ,Σ) ≈ N (µ∗,σ2

∗ ) where the first two
moments (mean and variance) are matched exactly. This
computation can be extended to the multivariate case where
h : �D → �E . The only difference is that the target dimen-
sions co-vary and the corresponding predictive covariance
matrix is no longer diagonal (as it is when the input is de-
terministic in the multivariate case) (Deisenroth et al., 2009).

Inference in Graphical Models
In this paper, we use Bayesian networks, a type of probabilis-
tic graphical model, to illustrate the relationships and condi-
tional independencies between variables.

Forward Inference Using the above equations, we can
compute p(Xf |Xi = xi,G = g) for the graphical model shown
in Figure 1 as follows. Given a current state, xi, and
a goal, g, we first compute p(A|xi,g) = p(π(xi,g) + υ) as
p(A|xi,g) = N (mπ ([xi g]ᵀ),kπ ([xi g]ᵀ)) from GPπ using (3)
and (4) where we use [xi g]ᵀ as x∗ and π as h. Alter-
natively, when gaze following we have a distribution over
goals instead of a deterministic value. For this case, we
compute p(A|xi,g) = N (a|µa,σa) using equations (6) and (7).
This quantity can then be again substituted into (6) and (7),3

where [a xi]ᵀ is now x∗ and f is h, in order to compute
p(Xf |xi,g) = p( f (xi,a) + ν |µa,Σa) ≈N (µxf ,Σxf ) from GPf .

Reverse Inference More complicated is the reverse infer-
ence where we infer the goal from observations of the current
and final state, p(G|Xi = xi,Xf = xf ). This computation is sim-
ilar to the filtering and smoothing computations used in Gaus-
sian dynamical systems (reviewed in (Deisenroth, 2010)). To
begin, we set Xi = xi and perform forward inference using
our prior p(G = g). We obtain p(A|xi) = N (a|µa,Σa) and
p(Xf |xi) = N (xf |µxf ,Σxf ). Now, we approximate the joint
p(A,Xf |xi) with a Gaussian.4 The remaining terms, the cross
terms of the joint covariance Σaxf = �axf [axᵀf ]− µaµ

ᵀ
xf , are

computed as in (Deisenroth et al., 2009; Deisenroth, 2010).
Now that we have the joint, we incorporate the measure-
ment xf by applying standard Gaussian conditioning formu-
las to the joint to get p(A|xi,xf ) = N (a|µ p

a ,Σ
p
a ), where µ

p
a =

µa +Σaxf (Σxf )−1(xf −µxf ), and Σ
p
a = Σa−Σaxf (Σxf )−1Σ

ᵀ
axf .

However, we want a distribution over goals, not over ac-
tions. Rather than attempting to find a closed-form solution
to the joint p(G,Xf |xi), we sample from p(A|xi,xf ) (we ap-
proximate the expectation with a finite sum) and use those as
the “measurements” when we compute p(G,A|xi,xf ). These

3Technically, we use the formulas for multivariate inputs and out-
puts which can be found in (Deisenroth, 2010).

4This is a standard approximation used in Gaussian filters such
as the UKF (Julier & Uhlmann, 2004) and the GP-ADF (Deisenroth
et al., 2009).



“measurements” act in the same way as the measured xf ,
above, and allow us to condition out on the observed A = a
in order to get our desired result.

Results
Implementation Details
To test our model, we randomly sample goal positions and
then compute the action required to fixate on this goal. We
add Gaussian noise to this action, compute the resulting gaze
vector if this action were taken, and add Gaussian noise to this
gaze vector. This method is equivalent to training the model
with rejection sampling wherein the agent rejects all samples
that do not result in successful fixation on the goal position.
The Gaussian processes are trained on this randomly gener-
ated data and then tested on separate test data.

The default reference frame for both agent and mentor is
at the origin gazing along the x-axis. Each agent has their
own reference frame and we assume that we know the trans-
formation from the mentor’s reference frame to the agent’s.
This transformation is not learned by our model; however,
we believe that this is a minor assumption; especially since
we already assume the agent can observe the mentor’s po-
sition and gaze angle for our model. The mentor and agent
are positioned as shown in Figure 3. Goal locations for the
training data were generated uniformly at random from the
area between the agent and the mentor (within the rectangle
formed by x = [100,500],y = [−500,500], where the agent is
at (0,0) and the mentor is at (500,0)).

We used Gaussian noise with standard deviation of 3 de-
grees for angles and a standard deviation of 10 cm for loca-
tions and distances. For reverse inference, the prior goal state
p(G) is a Gaussian centered halfway between the two agents
along the x-axis with a very high variance. While this prior
is quite weak, a single observation of (xi,x f ) is insufficient
to overcome the prior in reverse inference. Instead, we use a
single observation of xi and five observations of x f to get an
accurate estimate of p(G|xi,x f ). More precisely, we run re-
verse inference with the observed values (xi,x

(1)
f ) to compute

p(G|xi,x
(1)
f ), and then use this as the prior for a second run

of reverse inference to compute p(G|xi,x
(1:2)
f ). We repeat this

five times to compute p(G|xi,x
(1:5)
f ). We believe that this is

a reasonable number of observations for a human to make in
the short amount of time taken for gaze following.

Model Performance
Overall, we found that the model performs quite well. It
learns accurate transition and policy functions from small
amounts of noisy training data (n = 200 data points were used
in our accuracy tests) and the nonparametric nature of Gaus-
sian processes ensures very little customization is required.
The computational complexity of evaluating our model for
gaze following is O(E3) +O(DE2n2), where D and E are the
dimensionalities of the training inputs and the training tar-
gets, respectively, and n is the size of the training set. As

such, our model may not scale well to high dimensions with-
out additional approximations; however, it currently runs in
sub-minute times for the dimensionality we are using. Ad-
ditionally, the Gaussian approximations we are making have
little effect because the data is generally unimodal and close
to symmetric.

Figure 2 shows performance results for our model as it per-
forms forward inference, reverse inference, and gaze follow-
ing (combined reverse and forward inference). Other than
a few outliers, the estimated values of the model are accu-
rate and precise. The model is robust to noise and is able to
provide strong gaze following results even though additional
levels of uncertainty are introduced by the second level of in-
ference.

Blindfold Self-Experience Task
In order to validate the cognitive plausibility of our model,
we recreate a cognitive science experiment from (Meltzoff &
Brooks, 2008), where infants’ self-experience with a blind-
fold affects whether or not they follow the gaze of blindfolded
adults. In their tests, one third of the 96 infants are given ex-
perience with a blindfold, another third are given experience
with a “windowed” blindfold, and the remainder gain no ex-
perience with either. The children then interact with an adult
experimenter for four trials where, in each trial, the experi-
menter stops playing with the infant, places the blindfold over
her eyes, and then silently turns her head to align with one of
two targets (placed between the experimenter and the infant
but offset to the left and right). The trials are given a score of
+1 if the infant looks in the direction of the target, −1 if the
infant looks in the direction of the other target, and 0 if the
infant looks elsewhere. The looking score is calculated as the
sum of correct looks, incorrect looks, and no-looks and thus
the possible looking score range is [−4,+4].
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Figure 3: Experimental setup of a gaze following task. Inferred
goal positions are shown (red) next to true goal positions (blue).
Black arrows represent the initial and final gaze vectors of the agent
and mentor for a single test data point.

Similarly, in our experiment we train 60 separate agents
with our model on randomly generated training data. One
third of these agents are given additional experience with a
blindfold wherein they train an additional GPπ for their model
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Figure 2: Histogram plots showing the probability of an error (in degrees) between the inferred and the true gaze vector. These probabilities
were estimated from 375 test points spread uniformly over the test region. Note how the accuracy gracefully decays as more complicated
inference is performed ((a) is the simplest, while (c) is the most complex).

so that they now have GPπ and GPb
π , where GPπ is the orig-

inal GP of the model and GPb
π is the GP with blindfold ex-

perience. The other 40 agents are trained normally although
one group is the baseline group and the other is the windowed
group. However, in our formulation, the windowed blindfold
in the model amounts to presenting the same training data as
the no-blindfold case, so these two groups will be identical
except for noise. Each agent is presented with 4 trials where
it observes a mentor make a head turn to face either 45 de-
grees to the left or 45 degrees to the right (plus noise). Trials
are scored as +1 if the agent turns its head at least 30 degrees
in the direction of the correct target and −1 if it turns its head
at least 30 degrees in the direction of the wrong target.

The agents with no blindfold experience use the basic
model (which contains no blindfold knowledge) and thus as-
sume that the mentor is fixating on an object to the left or to
the right. Those with blindfold experience observe that the
mentor is wearing a blindfold and use their learned GPb

π for
the reverse inference (applying their model to the mentor).
For this group, the agent has (hopefully) learned that, when
blindfolded, there is no correlation between the mentor’s gaze
and the mentor’s goal position. The blindfold-experienced
agent then uses GPπ for the forward inference (because the
agent is not wearing a blindfold).
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Figure 4: Comparison of computational model to actual collected
infant data from (Meltzoff & Brooks, 2008).

In order to simulate infants with little experience with
blindfolds, we provided the agents in this experiment with

very little training data (n = 15). If we use more training data,
the agents perform almost perfectly in this task. Results are
shown in Figure 4 and match those of Meltzoff and Brooks
(Figure 4(a)). This is indicative that gaze following involves
understanding the underlying intention or goal and that self-
experience plays a major role in learning the consequences of
intentions and related actions.

Related Work
Our model is closely related to the goal-based imitation
model of Verma and Rao (Verma & Rao, 2006) and the in-
verse planning model of Baker et al. (Baker, Saxe, & Tenen-
baum, 2009). Unlike these previous models, which assume
discrete state and action spaces, our model is based on a
nonparametric model that allows learning and inference in
continuous state and action spaces. Also related to our ap-
proach are models for planning based on probabilistic in-
ference (Toussaint & Storkey, 2006; Verma & Rao, 2007;
Botvinick & An, 2009). Unlike these models, the gaze fol-
lowing model proposed herein involves inference over a sin-
gle time-step, which simplifies the inference problem. We
hope to explore the applicability of our model for multi-step
inference problems in future work. Our model for gaze fol-
lowing joins the growing number of Bayesian models for
cognition proposed in recent years and acknowledges the
psychophysical and neurobiological evidence for Bayesian
mechanisms in perception and action (e.g., (Rao, Olshausen,
& Lewicki, 2002; Oaksford & Chater, 2007)).

Within the realm of gaze following models, one class of
models posits that young infants watch an adult’s head move-
ment in space and are drawn to the correct hemi-field where
they are attracted to a salient target object (Butterworth & Jar-
rett, 1991); over time, they learn to follow gaze to an object
(Moore, 1999). A second class of models supports the nativist
view that infants have a built-in module for interpreting eye
gaze in terms of visual experience in others (Baron-Cohen,
1995). A third class of models adopts the developmental view
that gaze following behavior emerges from self-experience
(Meltzoff & Brooks, 2007). Our model can be regarded as a



Bayesian example of this last class of models.

Summary and Conclusion
This paper proposes a Bayesian framework for social inter-
action that postulates that (1) children learn a probabilistic
model of the sensory consequences of their own movements
through self-experience, and (2) they use this learned model
to interpret the actions of others. Specifically, we show how
gaze following can be modeled as goal inference within such
a framework: probabilistic inference over the unknown vari-
ables in a learned graphical model allows an agent to infer
another’s gaze direction as well as the action to direct gaze
to the same location. When given self-experience with blind-
folds, the model learns the consequences of occlusion and
subsequently does not follow the gaze of a blindfolded agent,
replicating infant gaze following results.

The proposed framework raises several interesting ques-
tions: (1) Can the model be extended to other goal-based
imitation tasks, e.g., goal-directed reaching? (2) This paper
explored a nonparametric implementation based on Gaussian
processes but what are possible ways of neurally implement-
ing the learned graphical model? (3) The paper assumes that
states in the environment are known (corresponding to the
case of MDPs or Markov decision processes) – how does the
model extend to the more realistic case where only obser-
vations of states are available (partially observable MDPs or
POMDPs) and where learning involves reward-based mecha-
nisms? We plan to explore these issues in future work.
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