
Estimating the Progress of MapReduce Pipelines
Kristi Morton, Abram Friesen, Magdalena Balazinska, Dan Grossman

Computer Science and Engineering Department, University of Washington
Seattle, Washington, USA

{kmorton,afriesen,magda,djg}@cs.washington.edu

Abstract— In parallel query-processing environments, accu-
rate, time-oriented progress indicators could provide much utility
given that inter- and intra-query execution times can have high
variance. However, none of the techniques used by existing tools
or available in the literature provide non-trivial progress estima-
tion for parallel queries. In this paper, we introduce Parallax,
the first such indicator. While several parallel data processing
systems exist, the work in this paper targets environments where
queries consist of a series of MapReduce jobs. Parallax builds
on recently-developed techniques for estimating the progress of
single-site SQL queries, but focuses on the challenges related to
parallelism and variable execution speeds. We have implemented
our estimator in the Pig system and demonstrate its performance
through experiments with the PigMix benchmark and other
queries running in a real, small-scale cluster.

I. INTRODUCTION

Over the last several years, our ability to generate and
archive extremely large datasets has dramatically increased.
Modern scientific applications – for example, those driven
by widely-distributed sensor networks or simulation-based
experiments – are producing data at an astronomical scale
and rate (e.g., [11]). Similarly, companies are increasingly
storing and mining massive-scale datasets collected from their
infrastructures and services (e.g., eBay, Google, Microsoft,
Yahoo!).

To analyze these massive-scale datasets, users are turning
to parallel database management systems (e.g., [7], [22], [23])
and other parallel data processing infrastructures (e.g., [4],
[8], [10]). Although these systems significantly speed-up query
processing, individual queries can still take minutes or even
hours to run due to the sheer size of the input data.

When queries take a long time to complete, users need
accurate feedback about query execution status, in particular
how long their queries are expected to run [17]. Resource
allocation algorithms can also benefit from access to such
information. Unfortunately, existing parallel systems provide
only limited feedback about query progress. Most systems
simply report statistics about query execution [3], [5], [6],
at best indicating which operators are currently running [5],
[6], [8] and possibly mapping this information onto a percent-
complete value [20]. Such indicators, however, are too coarse-

Acknowledgements. We would like to thank Robert Morton, YongChul
Kwon, Alan Gates, and Brian Cooper for feedback and advice. The Parallax
project is partially supported by NSF CAREER award IIS-0845397, NSF
CRI grant CNS-0454425, gifts from Yahoo! and Microsoft Research, and
Balazinska’s Microsoft Research Faculty Fellowship. K. Morton is supported
in part by an AT&T Labs Fellowship.

grained and inaccurate because different operators can take
wildly different amounts of time to run.

In this paper, we address this limitation by introducing
Parallax, the first, non-trivial time-oriented progress indicator
for parallel queries. We developed our approach for Pig
queries [19] running in a Hadoop cluster [8], an environment
that is a popular open-source parallel data-processing engine.
As an initial step, we focused on Pig queries that compile into
a series of MapReduce [4] jobs. Hence, our current indicator
does not handle joins. Furthermore, in this paper, we do not
consider failures, backup tasks [4], server heterogeneity, nor
the presence of competing workloads. While the key ideas
behind our technique are mostly not specific to the Pig/Hadoop
setting, this environment poses several unique challenges that
have informed our design and shaped our implementation.
Most notably, user-defined functions (UDFs) are the norm,
all intermediate results are materialized, and each scheduled
query fragment incurs a significant start-up cost.

Parallax is designed to be accurate while remaining simple
and addressing the above Pig/Hadoop-specific challenges. At a
high level, Parallax is based on the following key ideas. First,
as in prior work on single-site query progress estimation [1],
[13], Parallax breaks a query into pipelines, which are groups
of interconnected operators that execute simultaneously. Par-
allax estimates time remaining for a query by summing the
expected times remaining across all pipelines. Second, to
compute time-remaining for a pipeline, Parallax estimates the
number of tuples left to process by the pipeline, but also
the time-varying degree of parallelism that the pipeline will
exhibit. Finally, Parallax uses prior runs of the same query on
a user-generated representative data sample (e.g., a debug run),
to estimate the relative processing speeds of different pipelines
(including data materialization and network transfer steps).

Parallax is fully implemented in the Pig system. Experi-
mental results on an 8-node cluster are promising. They show
that, for a large class of queries, Parallax’s average accuracy
is within 10% and often even within 5% of an ideal indicator
(in the absence of cardinality estimation errors).

II. BACKGROUND AND RELATED WORK

MapReduce [4] (with its open-source variant Hadoop [8]) is
a programming model and an implementation for processing
massive-scale datasets. In MapReduce, a computation, or
job is expressed as a sequence of two operators: map and
reduce. MapReduce jobs are automatically parallelized and
executed on a cluster of commodity machines: the map stage

Record Reader Map Combine

Map Task

Split

HDFS

file

K1,N1
(a)

Reduce Task

{P 2}{P 1} {P 3} {P 4} {P 5}

K2,N2 K3,N3

Copy Sort Reduce

HDFS

file
(b) (c)

Local storage

Fig. 1. The operations of a MapReduce Job. Each Ni indicates the cardinality
of the data on the given link. Ki’s indicate the number of tuples seen so far
on that link. Each counter marks the beginning of a new pipeline (Section III).

is partitioned into multiple map tasks and the reduce stage is
partitioned into multiple reduce tasks. Each map task reads and
processes a distinct chunk of the partitioned and distributed
input data. The degree of parallelism depends on the input
data size. The output of the map stage is hash partitioned
across a configurable number of reduce tasks. Data between
the map and reduce stages as well as the final result are always
materialized.

To extend the MapReduce framework beyond the simple
one-input, two-stage data flow model and to provide a declar-
ative interface to MapReduce, Olston et. al developed the Pig
system [19]. In Pig, queries are written in Pig Latin, a language
that combines the high-level declarative style of SQL with the
low-level procedural programming model of MapReduce. Pig
compiles these queries into ensembles of MapReduce jobs and
submits them to a MapReduce cluster.

Pig/Hadoop’s existing progress estimator [20] has low accu-
racy (see Section IV) because it assumes all operators process
data at the same speed. Several relational DBMSs, including
parallel DBMSs, provide similarly coarse-grained progress
indicators. In fact, most systems simply maintain and display
a variety of statistics about (ongoing) query execution [3], [5],
[6] possibly also indicating which operators are running [5],
[6].

There has been significant recent work on developing
progress indicators for SQL queries executing within single-
node DBMSs [1], [2], [12], [13], [15], [16], possibly with
concurrent workloads [14]. Our approach extends these earlier
efforts to parallel queries.

Work on online aggregation [9] also strives to provide
continuous query execution feedback to users. This feedback,
however, takes the form of confidence bounds on result
accuracy rather than estimated completion times. Additionally,
these techniques use special operators to avoid any blocking
in the query plans.

III. THE PARALLAX PROGRESS ESTIMATOR

While our end goal is robust progress estimation for all
Pig Latin scripts, in this paper, we consider only scripts that
translate into MapReduce sequences.

a) Estimating Time-Remaining: As in prior work for
single-site SQL query progress estimation [1], [13], Parallax
breaks queries into pipelines, which are groups of intercon-
nected operators that execute simultaneously. For a given

MapReduce job, we identify five pipelines as illustrated in
Figure 1: (1) the split operation, (2)the record reader, map
runner, and combiner operations, (3) the copy, (4) the sort, and
(5) the reducer. Parallax ignores the split and sort pipelines
because they take a negligible amount of time (the sort
operation only merges data previously sorted by the combiner).
Parallax thus assumes three pipelines per job.

Given a sequence of pipelines, Parallax estimates their time
remaining as the sum of time remaining for the currently exe-
cuting and future pipelines. In both cases, the time remaining
for a pipeline is the product of the amount of work that the
pipeline must still perform and the speed at which that work
will be done. We define the remaining work as the number
of input tuples that a pipeline must still process. If N is the
number of tuples that a pipeline must process in total and K
the number of tuples processed so far, the work remaining is
simply N −K.

Given Np, Kp, and an estimated processing cost αp (ex-
pressed in msec/tuple) for a pipeline p, the time-remaining
for the pipeline is αp(Np − Kp). The time-remaining for a
computation is the sum of the time-remainings for all the jobs
and pipelines. Of course, we must estimate Np and αp for
each future pipeline.

b) Estimating Execution Speeds and Work Remaining:
An important contribution and innovation of Parallax is its es-
timation of pipeline processing speeds. Previous techniques ei-
ther ignore these speeds [1], [2], assume constant speeds [13],
or combine measured speed with optimizer cost estimates to
better weight different pipelines [12]. In contrast, to estimate
the execution speed of each pipeline, Parallax observes the
current speed for pipelines that already started and uses
information from earlier debug runs for upcoming pipelines.
This approach is especially well-suited for query plans with
user-defined functions. Debug runs can be done on small
samples of the dataset and are common in cluster-computing
environments.

Additionally, Parallax dynamically reacts to changes in run-
time conditions by applying a slowdown factor, sp to current
and future pipelines of the same type. More details about the
slowdown factor can be found on our project website [18].

For cardinality estimates, Np, Parallax relies on standard
techniques from the query optimization literature. That is,
for pre-defined operators such as joins, aggregates, or filters,
cardinalities can be estimated using cost formulas. For user-
defined functions and to refine pre-computed estimates, Paral-
lax can leverage the same debug runs as above. In this paper,
however, we do not address the cardinality estimation problem
and assume perfect cardinalities to study the other factors that
affect progress estimates.

c) Accounting for Dynamically Changing Parallelism:
The second key contribution of Parallax is its novel handling
of query parallelism, which has not been addressed by other
estimators.

When a query executes at large scale, Map and Reduce
functions are parallelized across many nodes. Parallelism af-
fects computation progress by changing the speed with which

a pipeline processes input data. The speedup is proportional
to the number of partitions, which we call the pipeline width.

Given J , the set of all MapReduce jobs, and Pj , the set of
all pipelines within job j ∈ J , the progress of a computation
is thus given by the following formula, where Njp and Kjp

values are aggregated across all partitions of the same pipeline
and Setupremaining is the overhead for the unscheduled map
and reduce tasks.

Tremaining = Setupremaining +
X

j∈J

X

p∈Pj

sjpαjp(Njp −Kjp)
pipeline widthjp

When estimating pipeline width, Parallax takes into account
the cluster capacity and the (estimated) dataset sizes. In a
MapReduce system, the number of map tasks depends on
the size of the input data, not the capacity of the cluster.
The number of reduce tasks is a configurable parameter. The
cluster capacity determines how many map or reduce tasks can
execute simultaneously. In particular, if the number of map (or
reduce) tasks is not a multiple of cluster capacity, the number
of tasks can decrease at the end of execution of a pipeline,
causing the pipeline width to decrease, and the pipeline to
slow down. For example, a 5 GB file, in a system with a
256 MB chunk size (a recommended value that we also use
in our experiments) and enough capacity to execute 16 map
tasks simultaneously, would be processed by a first round of
16 map tasks followed by a round with only 4 map tasks.
Parallax takes this slowdown into account by computing, at
any time, the average pipeline width for the remainder of the
execution of a pipeline.

IV. EVALUATION

We evaluate the Parallax estimator and compare it to other
estimators from the literature. All experiments were run on
an eight-node cluster configured with the Hadoop-17 release
and Pig Latin trunk from 02/12/2009. Each node contains
a 2.00GHz dual quad-core Intel Xeon CPU with 16 GB of
RAM. The cluster was configured to a maximum degree of
parallelism of 16 map tasks and 16 reduce tasks.

In all experiments, we show results for perfect cardinality
estimates as we want to emphasize the impact of other sources
of errors. Parallax is demonstrated in two forms: Perfect
Parallax, which uses α values from a prior run over the entire
dataset; and 1% Parallax which uses α collected from a prior
run over a 1% sampled subset (other sample sizes yielded
similar results).

To demonstrate the importance of α weights and also as a
motivation for Parallax, we first execute script1 from the Pig
tutorial, on our small 8-node cluster and a 210MB dataset.
Script1 contains fourteen unique Pig Latin statements, five
UDFs, and translates into a sequence of five MapReduce jobs.

We first execute the script in series (i.e., with exactly
one task for each map and reduce pipeline in each job). To
emphasize the effects of processing speed differences, we add
a time-consuming UDF to the third job. The entire query
takes 30 minutes to run. Figure 2(a) shows the results (the

(a)
!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

/<2

DEF

GE;

C+1

'"./,0,--,@

/30H3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

"()*(+),-.(/-01(2.-3425(,672(849

!"

:!"

'!!"

;
4
,67
-
,2
5
(<
=)
>
=2
4
4
(8
"
(?
)
7
3
.2
,2
9 !"#$%&#'()*&%+

@A0(+=2B5(C6B2

<6>

DE/

FE;

CG)

'"(<-=-..-0

<2=*2H,(<-=-..-0

(b)
!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

/<2

DEF

GE;

C+1

'"./,0,--,@

/30H3)*./,0,--,@
!" #!" $!" %!" &!" '!!"

"()*(+),-.(/-01(2.-3425(,672(849

!"

:!"

'!!"

;
4
,67
-
,2
5
(<
=)
>
=2
4
4
(8
"
(?
)
7
3
.2
,2
9 !"#$%&#'()*&%+

@A0(+=2B5(C6B2

<6>

DE/

FE;

CG)

'"(<-=-..-0

<2=*2H,(<-=-..-0

Fig. 2. Pig script1-hadoop, 210MB input data, (a) serial execution with extra
user-defined function and (b) parallel execution of original script.

y=x trend line corresponds to a perfect progress estimator).
As expected, the estimators from the literature (GNM [1],
DNE [1], and Luo [13]), which either ignore processing
speeds or assume constant speeds, do not perform well when
different operators process data at different rates. In contrast,
Parallax provides estimates within 4% of perfect. Additional
α-weight experiments (including those on the original script)
are available on our project website [18].

In a second experiment, we run the original (unmodified)
script1 but, this time, we allow two of the pipelines (the copy
and reduce pipelines of the first job) to execute with a degree
of parallelism of 16 while the rest of the query executes in
series due to the small data size. The query takes 13 minutes
to run. Figure 2(b) shows that, as expected, estimators from
the literature cannot directly be applied to parallel queries.

In the next experiment, we further study how Parallax han-
dles simple, parallel queries. We execute a LOAD-GROUPBY-
STORE script that translates into a single MapReduce job,
with both Map and Reduce tasks. This is thus a 3-pipeline
query. Uniform data distribution ensures that all map and
reduce tasks in the same round end at approximately the same
time. Figure 3(a) shows the result of running the query on
an 8GB-size input dataset with 32 map tasks and 32 reduce
tasks. Given that our cluster can execute 16 tasks in parallel,
the script runs with two rounds of map tasks followed by
two rounds of reduce tasks. Figure 3(b) shows the result
for the case of dynamically changing degree of parallelism.
In this experiment, the query runs on a 4.2GB dataset and
executes with 17 maps and 17 reduces. Each experiment
runs for approximately 28 minutes. The overall results are

(a)
!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

"()*(+),-.(/-01(2.-3425(,672(849

!"

:!"

'!!"

;
4
,67
-
,2
5
(<
=)
>
=2
4
4
(8
"
(?
)
7
3
.2
,2
9 !"#$%&#'()*&%+

@A0(+=2B5(C6B2

<6>

DE/

FE;

CG)

'"(<-=-..-0

<2=*2H,(<-=-..-0

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

"()*(+),-.(/-01(2.-3425(,672(849

!"

:!"

'!!"

;
4
,67
-
,2
5
(<
=)
>
=2
4
4
(8
"
(?
)
7
3
.2
,2
9 !"#$%&#'()*&%+

@A0(+=2B5(C6B2

<6>

DE/

FE;

CG)

'"(<-=-..-0

<2=*2H,(<-=-..-0

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

"()*(+),-.(/-01(2.-3425(,672(849

!"

:!"

'!!"

;
4
,67
-
,2
5
(<
=)
>
=2
4
4
(8
"
(?
)
7
3
.2
,2
9 !"#$%&#'()*&%+

@A0(+=2B5(C6B2

<6>

DE/

FE;

CG)

'"(<-=-..-0

<2=*2H,(<-=-..-0

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

"()*(+),-.(/-01(2.-3425(,672(849

!"

:!"

'!!"

;
4
,67
-
,2
5
(<
=)
>
=2
4
4
(8
"
(?
)
7
3
.2
,2
9 !"#$%&#'()*&%+

@A0(+=2B5(C6B2

<6>

DE/

FE;

CG)

'"(<-=-..-0

<2=*2H,(<-=-..-0

(b)
!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

"()*(+),-.(/-01(2.-3425(,672(849

!"

:!"

'!!"

;
4
,67
-
,2
5
(<
=)
>
=2
4
4
(8
"
(?
)
7
3
.2
,2
9 !"#$%&#'()*&%+

@A0(+=2B5(C6B2

<6>

DE/

FE;

CG)

'"(<-=-..-0

<2=*2H,(<-=-..-0

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

"()*(+),-.(/-01(2.-3425(,672(849

!"

:!"

'!!"

;
4
,67
-
,2
5
(<
=)
>
=2
4
4
(8
"
(?
)
7
3
.2
,2
9 !"#$%&#'()*&%+

@A0(+=2B5(C6B2

<6>

DE/

FE;

CG)

'"(<-=-..-0

<2=*2H,(<-=-..-0

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

"()*(+),-.(/-01(2.-3425(,672(849

!"

:!"

'!!"

;
4
,67
-
,2
5
(<
=)
>
=2
4
4
(8
"
(?
)
7
3
.2
,2
9 !"#$%&#'()*&%+

@A0(+=2B5(C6B2

<6>

DE/

FE;

CG)

'"(<-=-..-0

<2=*2H,(<-=-..-0

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

"()*(+),-.(/-01(2.-3425(,672(849

!"

:!"

'!!"

;
4
,67
-
,2
5
(<
=)
>
=2
4
4
(8
"
(?
)
7
3
.2
,2
9 !"#$%&#'()*&%+

@A0(+=2B5(C6B2

<6>

DE/

FE;

CG)

'"(<-=-..-0

<2=*2H,(<-=-..-0

Fig. 3. Progress estimation for a query comprising two rounds of map tasks
followed by two rounds of reduce tasks. (a) All four round comprise 16 tasks
each. Uniformly distributed 8GB dataset; (b) First round of maps and first
round of reduces comprise 16 tasks each. Second rounds have only one task
each. Uniformly distributed 4.2GB dataset.

extremely encouraging, with average error values remaining
below 4.5% for all experiments. Figures 3(a) and (b) show that
1% Parallax is pessimistic during the first round of map tasks.
The pessimism is caused by a higher-cost α value computed
on the sample run for the copy pipeline compared with the
actual value measured during query execution. The α values
were off by more than an order of magnitude, but thanks to
the slowdown factor, Parallax recovers once the copy pipeline
starts processing tuples, which happens right after the first
round of maps completes. The corrected α values propagate to
future pipelines. Overall, these results demonstrate that Paral-
lax can accurately predict the runtime for parallel queries with
dynamically variable parallelism (assuming no significant data
skew and accurate cardinality estimates). Other configurations
yield similar results [18].

We also evaluate Parallax on a subset of the latency queries
from the PigMix [21] benchmark. The queries that we use
translate into sequences of one to three MapReduce jobs (i.e.,
we exclude queries that contain joins). For our cluster, these
jobs comprise 60 to 119 maps and 16 reduces each and run
for three to ten minutes. We use a 15GB dataset as input.
Depending on the attribute, data distribution is either Zipfian
or uniform. Table I summarizes the results.

Parallax outperforms the other estimators both in terms
of average and maximum errors on all queries. Average
estimation errors remain below 6.0% for Perfect Parallax and
below 7.6% for 1% Parallax. Maximum errors remain below
15% for all queries. Overall Parallax performs well relative to
the other estimators, especially on the more complex queries
such as L9 and L10, which consist of three jobs each. Parallax
produces better estimates for these queries because it computes

TABLE I
ESTIMATION ERRORS PIGMIX LATENCY BENCHMARKS, 15GB DATASET

Perfect Parallax 1% Parallax dne gnm Luo Pig
% Error % Error % Error % Error % Error % Error

Query Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
L1 2.9 7.1 2.5 6.4 3.1 9.0 3.1 9.0 6.7 11.6 14.0 30.2
L4 4.7 10.6 4.0 9.6 5.2 15.4 5.5 15.6 5.0 16.7 12.2 27.8
L6 4.6 10.7 3.9 9.7 7.1 18.9 7.6 18.9 6.1 19.7 10.6 23.4
L7 2.4 6.8 1.0 3.2 6.8 21.9 6.9 22.0 7.8 22.1 11.8 25.8
L8 6.0 13.0 5.6 12.1 7.8 14.3 7.8 14.3 8.8 14.8 12.0 26.3
L9 5.6 14.5 7.6 15.0 16.5 36.0 16.5 36.0 19.3 42.7 14.3 27.4
L10 3.2 7.1 5.6 13.4 15.9 37.7 15.9 37.7 19.1 45.2 12.8 21.9

a finer-grained estimate of processing speeds and concurrency.

V. CONCLUSION

We presented Parallax, the first, non-trivial time-based
progress indicator for Pig Latin scripts that translate into a
series of MapReduce jobs. Parallax handles varying processing
speeds and degrees of parallelism during query execution.
Parallax is fully implemented in Pig and outperforms existing
alternatives on representative workloads. Additional informa-
tion about Parallax including extra experimental results are
available on the Nuage project website [18].

REFERENCES

[1] S. Chaudhuri, V. Narassaya, and R. Ramamurthy. Estimating progress
of execution for SQL queries. In Proc. of the SIGMOD Conf., Jun 2004.

[2] Chaudhuri et. al. When can we trust progress estimators for SQL queries.
In Proc. of the SIGMOD Conf., Jun 2005.

[3] DB2. SQL/monitoring facility. http://www.sprdb2.com/
SQLMFVSE.PDF, 2000.

[4] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. In Proc. of the 6th OSDI Symp., 2004.

[5] M. Dempsey. Monitoring active queries with Teradata Man-
ager 5.0. http://www.teradataforum.com/attachments/
a030318c.doc, 2001.

[6] Greenplum. Database performance monitor datasheet (Green-
plum Database 3.2.1). http://www.greenplum.com/pdf/
Greenplum-Performance-Monitor.pdf.

[7] Greenplum database. http://www.greenplum.com/.
[8] Hadoop. http://hadoop.apache.org/.
[9] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In

Proc. of the SIGMOD Conf., 1997.
[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed

data-parallel programs from sequential building blocks. In Proc. of
EuroSys, pages 59–72, 2007.

[11] Large Synoptic Survey Telescope. http://www.lsst.org/.
[12] G. Luo, J. F. Naughton, C. J. Ellman, and M. Watzke. Increasing the

accuracy and coverage of SQL progress indicators. In Proc. of the 20th
ICDE Conf., 2004.

[13] G. Luo, J. F. Naughton, C. J. Ellman, and M. Watzke. Toward a progress
indicator for database queries. In Proc. of the SIGMOD Conf., Jun 2004.

[14] G. Luo, J. F. Naughton, and P. S. Yu. Multi-query SQL progress
indicators. In Proc. of the 10th EDBT Conf., 2006.

[15] C. Mishra and N. Koudas. A lightweight online framework for query
progress indicators. In Proc. of the 23rd ICDE Conf., 2007.

[16] C. Mishra and M. Volkovs. ConEx: A system for monitoring queries
(demonstration). In Proc. of the SIGMOD Conf., Jun 2007.

[17] B. A. Myers. The importance of percent-done progress indicators for
computer-human interfaces. In Proc. of CHI’85, pages 11–17, 1985.

[18] Nuage project. http://nuage.cs.washington.edu/.
[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin:

a not-so-foreign language for data processing. In Proc. of the SIGMOD
Conf., pages 1099–1110, 2008.

[20] Pig Progress Indicator. http://hadoop.apache.org/pig/.
[21] PigMix Benchmarks. http://wiki.apache.org/pig/PigMix.
[22] Teradata. http://www.teradata.com/.
[23] Vertica, inc. http://www.vertica.com/.

