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Abstract
MAP inference in continuous probabilistic mod-
els has largely been restricted to convex density
functions in order to guarantee tractability of the
underlying model, since high-dimensional non-
convex optimization problems contain a combi-
natorial number of local minima, making them
extremely challenging for convex optimization
techniques. This choice has resulted in sig-
nificant computational advantages but a loss in
model expressivity. We present a novel approach
to nonconvex optimization that overcomes this
tradeoff by exploiting local structure in the ob-
jective function, greatly expanding the class of
tractable, continuous probabilistic models. Our
algorithm optimizes a subset of variables such
that near the minimum the remaining variables
decompose into approximately independent sub-
sets, and recurses on these. Finding the global
minimum in this way is exponentially faster than
using convex optimization with restarts.

1. Introduction
MAP inference in continuous probabilistic models has typ-
ically been restricted to (or approximated by) convex func-
tions in order to guarantee that inference remains tractable.
Nonconvex functions are generally intractable, with much
of the difficulty arising from a combinatorial explosion of
modes in the objective function. For example, protein fold-
ing (Anfinsen, 1973; Baker, 2000) corresponds to finding
the MAP assignment of a continuous pairwise Markov ran-
dom field, e.g., (Yanover et al., 2006), where the protein
conformations follow a Boltzmann distribution. The goal
is to find the minimum-energy configuration of a chain of
amino acids, and although the amino acids only interact
in pairs, the combination of these interactions results in
an extremely intricate energy landscape. State-of-the-art
solvers for this problem use convex optimization with ran-
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domization and other refinements, but are insufficient for
most proteins. In effect, attempting to solve protein folding
by gradient descent is akin to attempting to solve a jigsaw
puzzle by sliding each piece straight to its correct position,
ignoring that it bumps into other pieces along the way.

In reality, the way we solve puzzles is by decomposition:
find approximately independent subproblems, solve each
separately, and combine the results; if the combination
fails, try a new decomposition. Problem decomposition has
a long history in combinatorial optimization, starting with
the DPLL satisfiability solver (Davis et al., 1962), which
finds an assignment of values to Boolean variables that
makes the objective formula true. More recently, develop-
ments like recursive conditioning (Darwiche, 2001), MPE-
SAT (Sang et al., 2007), and sum-product networks (Gens
& Domingos, 2013) showed that similar ideas can be used
to find modes of probability distributions. In this paper,
we extend these ideas to nonconvex optimization, thereby
greatly extending the class of models for which inference
is tractable. The main feature we require of the objective
function is that it be a sum of terms, each of which de-
pends on only a subset of the variables, similar to satisfia-
bility formulas and probabilistic graphical models. Objec-
tive functions of this form are very common (e.g., regres-
sion, graphical models, energy functions), and our method
should therefore be widely applicable.

The key step in our algorithm is to dynamically identify a
subset of variables that, once optimized, decomposes the
remaining variables into approximately independent sub-
sets. These can then be separately optimized, and we do
so recursively, finding within each a subset that further
decomposes it, etc. The separating variables are then re-
optimized given the solutions to the subproblems, and the
process repeats until convergence. Solving subproblems
separately leads to an exponential reduction in run time.
The local optimization subroutine can be any method; in
our experiments, we use conjugate gradient with restarts.

Our approach has similarities with block coordinate de-
scent (Tseng & Yun, 2009) and alternating minimization
methods (O‘Sullivan, 1998), but with the key difference
that our decomposition is recursive and dynamic, changing
from one iteration to the next as dictated by the properties
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of the objective function in the current subspace. One in-
terpretation of our algorithm is that we generate and solve
an approximation to the objective function, where this ap-
proximation can be compiled into a sum-product network.
However, where sum-product networks learn functions that
are guaranteed to be efficiently optimizable, our algorithm
approximates arbitrary functions for optimization.

2. Local Structure
In unconstrained optimization the goal is to minimize
an objective function, f(x), over the values of the vari-
ables, x ∈ Rn. We focus on functions, f : Rn → R, that
are continuously differentiable, have a nonempty optimal
set x∗ with optimal value f∗, and are partially separa-
ble (Griewank & Toint, 1981; Nocedal & Wright, 2006),
such that f(x) =

∑
i ti(x), where each term ti depends

only on a subset of x. A function is fully separable if it can
be expressed as f(x) =

∑
i ti(xi). Such functions are sig-

nificantly easier to optimize, since they decompose with re-
spect to minimization; i.e., minx f(x) =

∑
i minxi

ti(xi).

Similarly, partially separable functions can exhibit
partial decomposition. For example, rewriting
minx,y,z g(x, y, z) = minx,y,z t0(x, z) + t1(y, z) as
minz {minx t0(x, z) + miny t1(y, z)}, reveals that the
minimization within the braces has decomposed. Thus,
if we were to assign z and perform the minimiza-
tion conditioned on z = a, the resulting function,
g(x, y|z = a) = minx t0(x, a) + miny t1(y, a), is fully
separable and decomposes into two independent minimiza-
tions. Thus, partial decomposition refers to a decomposi-
tion that occurs as a result of conditioning on any value of
another variable. However, this is a strict assumption, as
even simple functions such as t0(x, y)+ t1(y, z)+ t2(z, x)
are not partially decomposable.

Extending these concepts, we introduce the idea of local
decomposition, which occurs as a result of conditioning on
specific values of another variable. A trivial example of this
would occur if we were optimizing minx,y,z h(x, y, z) =
minx,y,z t0(x) + t1(x, y, z) + t2(y), where t1(x, y, z) =
xyz. Here, if we assign z = 0, then t1 = 0, for any
values of x and y. As a result, h(x, y, 0) decomposes as
minx t0(x) + 0 + miny t2(y). This decomposition is lo-
cal because it depends on the specific value that z is as-
signed and would (potentially) not occur for other values
of z. Note that local decomposition subsumes partial de-
composition so, in the remainder of the paper, references to
local decomposition also imply partial decomposition. In
addition, locally independent subspaces are those that can
be optimized independently due to local decomposition.

Finally, since the above definition has limited applicabil-
ity, we introduce approximate local decomposition. In the
previous example, t1 had to become identically 0 to allow

decomposition. We relax this by introducing an error toler-
ance ε ≥ 0 and considering the upper and lower bounds on
t1(x, y, z), such that t1(x, y, z) ∈

[
t1(x, y, z), t1(x, y, z)

]
.

Similarly, we can consider the bound on the conditioned
term t1(x, y|z) ∈

[
t1(x, y|z), t1(x, y|z)

]
. Dropping the

variables for clarity, if we know that t1 ∈
[
t1, t1

]
and

that t1 − t1 ≤ 2ε, then we can replace t1 with a constant
k = 1

2

(
t1 + t1

)
and guarantee that |h∗−hmin| ≤ ε, where

hmin is the optimum of h with t1 = k and h∗ is the true op-
timum of h. Extending this to the case where m terms are
assigned, the maximum possible error is simply mε. We
refer to the process of assigning terms to constants when
their bounds are sufficiently narrow as simplification.

3. An Algorithm for Nonconvex Optimization
In this section, we develop our optimization algorithm
(RDIS), which globally minimizes an objective function by
(R)ecursively (D)ecomposing it into locally (I)ndependent
(S)ubspaces. Pseudocode is presented in Algorithm 1.

The main idea underlying RDIS is that decomposed func-
tions require exponentially less exploration to find the
global optimum than non-decomposed functions. Thus, the
goal of RDIS is to find and exploit decomposition in the ob-
jective function, in order to significantly reduce the amount
of search necessary to globally optimize a nonconvex func-
tion. While most interesting problems are not fully sepa-
rable, many are locally separable. Referring to the func-
tion g(x, y, z) from Section 2, we see that conditioning on
z caused the remaining subproblem to decompose. Fol-
lowing this same mechanism, RDIS dynamically chooses
variables (or blocks of variables) to condition on, in order
to achieve separability and decomposition in the remaining
sub-function. It exploits full, partial, and (approximate) lo-
cal separability to realize this decomposition.

Concretely, if we are optimizing f(x) =
∑

i ti(x), then
RDIS chooses a block of variables xc ∈ x, where the
remaining variables are contained in xu such that x =
{xc, xu}. This choice induces a partition on the terms
such that t = {tc, tb, tu}, where tc are those terms con-
taining variables only in xc, while tu is the set of terms
containing variables only in xu and tb contains the remain-
ing terms, each of which contains variables in both xc
and xu. In general, tb is nonempty, otherwise the prob-
lem would be fully separable. Now, RDIS chooses and as-
signs a set of values, xc = vc. Conditioning on xc causes
xu to decompose into k subsets of variables x1u, . . . , x

k
u.

In the worst case k = 1 and no decomposition occurs,
while in the best case k = |xu| and xu fully decom-
poses. In general, 1 ≤ k ≤ |xu|, resulting in the above
decomposition into k subsets. Similarly, the resulting
minimization also decomposes: minxu

f(xu|xc = vc) =∑k
j=1 minxj

u
fuj

(xju|xc = vc), where fuj
(xju|xc = vc) =
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Algorithm 1 Approximate minimization of an objective
function by recursive decomposition into locally indepen-
dent subspaces.
input The function f(x) =

∑
i ti(x) over variables x,

contained in terms t = {ti}, each of which is over a
subset of the variables.

input Approximation error, ε.
1: function MinRDIS(f, x, t, ε)
2: choose a block of variables xc from x
3: tc ← terms only containing xc
4: xu ← x\xc and tub ← t\tc
5: while domain of xc not sufficiently explored do
6: choose values vc for xc
7: fxc=vc ← simplify(tub, ε | xc = vc)
8:

{
fuk

(xku)
}
← decompose(fxc=vc , xu, tub)

9: fmin(vc, xu) =
∑

kMinRDIS(fuk
, xku, tub, ε)

10: fmin(x)← min (fmin(x), fmin(vc, xu))
11: end while
12: return fmin(x)
13: end function

∑
tuj

(xju) +
∑
tb(x

j
u|xc = vc). RDIS tracks this condi-

tional decomposition as well as any local decompositions
that occur. It then performs independent optimizations on
each of the k separate sub-functions, and sums their solu-
tions to get the solution of minxu f(xu|xc = vc).

The separability structure that RDIS exploits exists at many
levels of detail within the objective function. To cap-
ture this structure, RDIS optimizes each of the indepen-
dent sub-functions fu1

(x1u|xc = vc), . . . , fuk
(xku|xc = vc)

by recursing on it as if it were the entire objective function.
When |xju| drops below a user-provided size, RDIS condi-
tions entirely on xju, choosing values in the same manner
as for any conditioning set, xc, and the recursion halts.

After minimizing each sub function fuj
, RDIS uses the op-

timal values found, x∗u, to choose new values for xc, by
optimizing f(xc|xu = x∗u). Given new values xc = v′c,
RDIS optimizes f(xu|xc = v′c), a new sub-function that
results in novel decompositions and simplifications. This
is because RDIS exploits (approximate) local decomposi-
tion and the separability structure at each level of recursion
changes as the conditioning variables xc and their values
vc change. Thus, the entire structure of the optimization
changes over time as blocks of variables and their values
are chosen based on the local information in different parts
of space. This allows RDIS to flexibly adapt to the local
structure in the objective function.

A wide array of possible methods exist for choosing blocks
of variables (e.g., MOMS (Freeman, 1995)). In this pa-
per, we focus on a heuristic that achieves decomposition
whenever possible: hypergraph partitioning. Choosing the

smallest block of variables that, when conditioned on, de-
composes the remaining variables provides maximum de-
composition. RDIS constructs a hypergraph with a vertex
for each term and a hyperedge for each variable, where
each hyperedge connects to all vertices for which the cor-
responding term contains that vertex’s variable. The cutset
defined by the best partition is the smallest set of variables
that need to be removed in order to decompose the hyper-
graph and is exactly the set of variables that RDIS chooses
on line 2. This variable selection heuristic is local because
the variables and terms at each level of the recursion vary
depending on prior decompositions and simplifications.

For value selection (or, equivalently, subspace optimiza-
tion), we use a very simple method: conjugate gradient de-
scent with random restarts. Other optimization methods are
also possible (e.g., Monte Carlo search, trust-region meth-
ods, simulated annealing) and we intend to investigate their
effect in future work. However, our successes with this ba-
sic technique indicate that our underlying mechanism, re-
cursive decomposition using local structure, is effective.

As discussed in Section 2, simplification of the objective
function is the process of assigning terms to constant val-
ues when their bounds become sufficiently narrow. RDIS
maintains the bounds of each term, ti ∈

[
ti, ti

]
, as the state

of the variables in ti change (we assume that the terms have
bounded range within the region of interest). At each level
of recursion, we examine the bounds of each term and sim-
plify those with ti − ti ≤ 2ε. If there are m terms, then the
maximum possible error that simplification can introduce
into the objective function ismε, when allm terms are sim-
plified. Techniques such as interval arithmetic (Hansen &
Walster, 2003) can be used to compute bounds on arbitrary
terms; however, better bounds and thus more simplification
and decomposition can typically be achieved by consider-
ing the specific problem being optimized.

4. Analysis
If f(x) =

∑
i ti(x) is continuously differentiable and has

a nonempty optimal set x∗ with optimal value f∗ then we
can state the following theorems.

Theorem 1. Algorithm 1 (RDIS) returns a stationary point
of f when ε = 0.

Corollary 1. Algorithm 1 returns the global optimum f∗

when ε = 0 and f is convex.

The intuition behind the proof of Theorem 1 is that, at each
level of recursion, RDIS partitions the variables into the
two sets xc and xu, chooses initial values for xc, and then
performs a sequence of iterative updates to the values of
these sets. When ε = 0, this process satisfies the conditions
for convergence of an inexact Gauss-Seidel method (Bonet-
tini, 2011).
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For ε > 0, if there are m terms and the algorithm con-
verges, then the error due to simplification is at most mε.
However, we do not have an explicit proof that RDIS con-
verges, even in the convex case. Our preliminary analysis
indicates that there may be rare corner cases in which the
alternating minimization aspect of RDIS combined with
the simplification of terms can potentially result in a non-
converging sequence of values. Nonetheless, we have not
experienced any issues with convergence during our experi-
mental evaluations of RDIS. Furthermore, our experiments
show ε > 0 to be extremely beneficial in practice, espe-
cially for large and highly-connected problems.

At each level of recursion, RDIS uses hypergraph parti-
tioning to choose the smallest conditioning set of vari-
ables that results in a decomposition of the remaining vari-
ables. Let nc = |xc| be the size of the conditioning set
and n1u, . . . , n

k
u = nu be the sizes of the independent sets

resulting from the decomposition of xu, then the dimen-
sionality of the space that RDIS explores is k · nu · nc. In
decomposition-free algorithms, however, the dimensional-
ity of the state space is (nu)k · nc, which is exponentially
larger. This examination highlights one of the major ad-
vantages that RDIS has over other algorithms that do not
exploit local and partial decomposition.

5. Experimental Evaluation
We have preliminary results for Algorithm 1 on two dif-
ficult nonconvex optimization problems: a highly mul-
timodal test function we constructed and continuous
sidechain placement (Yanover et al., 2006) in protein fold-
ing (Anfinsen, 1973; Baker, 2000). We have compared
RDIS to conjugate gradient descent (CGD) and block-
coordinate descent (BCD), both with random restarts.

The test function is defined as follows. Given a height
h, a branching factor k, and a maximum arity A, we
define a complete k-ary tree of variables of the speci-
fied height, with x0 as the root. For all paths pj ∈ P
of length lj ≤ A, with lj even, we define a term
tpj

=
∏

xi∈pj
sin(xi). We now define the test function

fh,k,A(x0, . . . , xn) =
∑n

i=1(c0xi + c1x
2
i ) + c2

∑
P tpj .

It is a multidimensional sinusoid placed in the basin of a
quadratic function parameterized by c1, with slope c0.

RDIS finds significantly better minima than both CGD and
BCD on functions of arity 8 and 12 while reaching an
equivalent minimum faster for arity 4 (a larger arity results
in more complex dependencies between variables and more
terms in the function). An ablated version of RDIS where
blocks of variables are instead chosen randomly performs
on par with CGD, indicating that the performance of RDIS
degrades gracefully when decomposition does not occur.

Protein folding is the process by which a protein, consist-

ing of a long chain of amino acids, assumes its functional
shape. The computational problem is to predict this final
conformation given a known sequence of amino acids and
can be modeled as MAP inference in a graphical model.
This requires minimizing an energy function consisting
mainly of a sum of pairwise distance-based terms repre-
senting chemical bonds, hydrophobic interactions, electro-
static forces, etc., where, in the simplest case, the variables
are the relative angles between the atoms. Each amino acid
is composed of a backbone segment and a sidechain and the
sidechain placement task is to predict the conformation of
the sidechains when the backbone atoms are fixed in place.

Our results indicate that RDIS is able to take advantage
of the large amounts of local structure present in this task
in order to return consistently better minimas than either
conjugate gradient descent or block coordinate descent. In
all but the smallest protein, RDIS significantly outperforms
the other algorithms and never performs worse than either
of the other algorithms. Furthermore, the amount by which
RDIS improves on CGD and BCD increases with the size
of the proteins, demonstrating the significant reduction in
the size of the search space that RDIS explores.

6. Conclusion
This paper proposes a new approach to solving hard non-
convex optimization problems, greatly expanding the class
of tractable continuous probabilistic models. RDIS re-
cursively decomposes the state space into approximately
locally independent subspaces, enabling them to be opti-
mized separately and exponentially reducing the time re-
quired to find the global optimum (or a good local one). In
our experiments, RDIS systematically outperforms conju-
gate gradient and block coordinate descent.

Directions for future research include defining and learning
models that exhibit the structure exploited by RDIS, apply-
ing RDIS to a wide variety of nonconvex optimization and
inference problems, further analyzing its theoretical prop-
erties, developing new variable and value selection meth-
ods, extending RDIS to handle constrained optimization,
and using similar ideas for high-dimensional integration.
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