
The Sum-Product Theorem: A Foundation for Learning Tractable Models
(Supplementary Material)

Abram L. Friesen AFRIESEN@CS.WASHINGTON.EDU
Pedro Domingos PEDROD@CS.WASHINGTON.EDU

Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195 USA

A. Decomposable SPF summation complexity
Let S(X) be a decomposable SPF with size |S| on commu-
tative semiring (R,⊕,⊗, 0, 1), let d = |Xi| for all Xi ∈ X
where X = (X1, . . . , Xn), and let the cost of a ⊕ b and
a ⊗ b for any elements a, b ∈ R be c. Further, let e de-
note the complexity of evaluating any unary leaf function
φj(Xi) in S and let k = maxv∈Ssum,j∈Ch(v) |Xv\Xj | < n,
where Ssum, Sprod, and Sleaf are the sum, product, and leaf
nodes in S, respectively, and Ch(v) are the children of
v. Then the complexity of computing

⊕
x∈X S(x) is

|S| · c+ |Sleaf| · d(e+ c) + |Ssum| · (c+ kdc).

For certain simple SPFs that have very little internal struc-
ture and many input variables, the worst case complexity
of summing S can be quadratic in |S| and occurs in the
rare and restrictive case where k = O(n) = O(|S|), due
to the

⊕
Xv\i

1 term at each sum node (see proof of The-
orem 1). However, in any semiring with an idempotent
sum (i.e., a ⊕ a = a for every a ∈ R) such as the min-
sum or max-product semirings, this term is always equal to
1 and thus no computation is necessary. Alternatively, if
the semiring supports multiplication and division as in the
sum-product semiring then this complexity can be reduced
by first computing the product over all variables and then
dividing out as needed. If the semiring has neither of these
properties, these identity summations can still be computed
with a single preprocessing pass through the SPF since they
are constants and independent of the input variables. For all
semirings we’ve studied, this quadratic cost does not occur,
but we include it for completeness.

B. Logical inference (continued)
Model counting. Model counting (#SAT) is the problem
of computing the number of satisfying assignments of a
Boolean formula. The model count of an NNF F can be
obtained by translating it from the Boolean semiring to the
counting sum-product semiring P = (N,+,×, 0, 1) (R+ is
used instead for weighted #SAT), and then summing it.
Definition 8. Translating an SPF from semiring
(R,⊕,⊗, 0, 1) to semiring (R′,�,�, 0′, 1′) with R ⊆ R′,
involves replacing each ⊕ node with a � node, each ⊗

node with a � node, and each leaf function that returns 0
or 1 with one that returns 0′ or 1′, respectively.

However, simply summing the translated function F ′ may
compute an incorrect model count because the same satis-
fying assignment may be counted multiple times; this oc-
curs when the idempotence (a semiring R is idempotent if
a ⊕ a = a for a ∈ R) of the two semirings differs, i.e., ei-
ther semiring R is idempotent and R′ is not, or vice versa.
If exactly one of the two semirings is idempotent, F must
be deterministic to ensure that summing F ′ gives the cor-
rect model count.
Definition 9. An OR node is deterministic iff the supports
of its children are disjoint. An NNF is deterministic iff all
of its OR nodes are deterministic.

The support of a function G(X) is the set of points S ⊆ X
such that G(x) 6= 0 for all x ∈ S . If F is deterministic
and decomposable, then it follows from the sum-product
theorem that its model count can be computed efficiently.
Corollary 8 (Darwiche, 2001a). The model count of a de-
terministic, decomposable NNF can be computed in time
linear in its size.

Most algorithms for #SAT (e.g., Relsat (Bayardo Jr. & Pe-
houshek, 2000)), Cachet (Sang et al., 2004), #DPLL (Bac-
chus et al., 2009)) are also instances of SUMSPF, since
they extend DPLL by, at each level of recursion, decompos-
ing the CNF into independent components (i.e., no variable
appears in multiple components), solving these separately,
and caching the model count of each component. Compo-
nent decomposition corresponds to a decomposable prod-
uct node in SUMSPF and component caching corresponds
to connecting a sub-SPF to multiple parents. Notice that
the sum nodes created by DECOMPOSE are deterministic.

MAX-SAT. MAX-SAT is the problem of computing the
maximum number of satisfiable clauses of a CNF, over all
assignments. It can be generalized to NNFs as follows.
Definition 10. Let F (X) be an NNF and x ∈ X an assign-
ment. The SAT number (SN) of a literal φ(Xj) ∈ F is 1 if
φ(xj) is true and 0 otherwise. The SN of an AND node is
the sum of the SNs of its children. The SN of an OR node is
the max of the SNs of its children.

The Sum-Product Theorem: A Foundation for Learning Tractable Models (Supplementary Material)

MAX-SAT of an NNF F (X) is the problem of computing
the maximum SAT number of the root of F over all assign-
ments x ∈ X . If F is a CNF, then this reduces to standard
MAX-SAT. MAX-SAT of F can be solved by translating
F to the max-sum semiringM = (N−∞,max,+,−∞, 0)
(where R+,−∞ is used for weighted MAX-SAT), and then
summing it. Clearly, F ′ is an SPF onM, i.e., a max-sum
network. The corollary below follows immediately from
the sum-product theorem.
Corollary 9 (Darwiche, 2001b). MAX-SAT of a decompos-
able NNF can be computed in time linear in its size.

MAX-SAT of an arbitrary NNF (or CNF) can be com-
puted by first translating it to M and then calling SUM-
SPF, which can be extended to perform branch and bound
(BnB) (Lawler & Wood, 1966) when traversing the SPF.
This allows SUMSPF to prune sub-SPFs that are not rel-
evant to the final solution, which can greatly reduce the
search space. With this addition, DPLL-based BnB solvers
for MAX-SAT (e.g., Heras et al. (2008) and references
therein) are instances of SUMSPF. Most relevant, however,
is the MPE-SAT algorithm of Sang et al. (2007), since both
it and SUMSPF use decomposition and caching to improve
their efficiency.

C. Probabilistic inference (continued)
Marginal inference (continued). Tree-based methods in-
clude junction-tree clustering (Lauritzen & Spiegelhalter,
1988) and variable elimination (Dechter, 1999), which cor-
respond (explicitly and implicitly, respectively) to con-
structing a junction tree and then summing its correspond-
ing tree-like SPN. Conditioning algorithms such as re-
cursive conditioning (Darwiche, 2001c), value elimina-
tion (Bacchus et al., 2002), AND/OR search (Dechter &
Mateescu, 2007), and #DPLL (Bacchus et al., 2009) tra-
verse the space of partial assignments by recursively con-
ditioning on variables and their values. These algorithms
vary in the flexibility of their variable ordering, decompo-
sition, and caching (see Bacchus et al. (2009) for a com-
parison), but are all instances of SUMSPF, which can use
a fully-dynamic variable ordering, as value elimination
can and #DPLL does, or a fixed ordering, as in variants
of recursive conditioning and AND/OR search. Decom-
position and caching correspond to decomposable prod-
uct nodes and connecting sub-SPNs to multiple parents,
respectively, in SUMSPF. Thirdly, inference in graphi-
cal models can be performed by compilation to an arith-
metic circuit (AC) (Darwiche, 2003). In discrete domains,
Rooshenas & Lowd (2014) showed that SPNs and ACs are
equivalent, but that SPNs are always smaller or equal in
size. In continuous domains, however, it is unlikely that
even this relationship exists, because a AC would require an
infinite number of indicator functions. Furthermore, exist-

ing compilation methods require first encoding the graph-
ical model in very restrictive languages (such as CNF or
SDDs), which can make them exponentially slower than
SUMSPF. Finally, no tractability properties have been es-
tablished for ACs so there is no guarantee before compiling
that inference will be tractable, nor have they been gener-
alized to other semirings.

MPE. Beyond computing the probability of evidence,
another key probabilistic inference problem is finding the
most probable or MPE state of the non-evidence variables
of P (X) given the evidence, argmaxXE

P (e,XE) for
evidence e ∈ XE where XE = X\XE . The MPE
value (maximum probability of any state) of an SPN S
can be computed by translating S to the non-negative
max-product semiring (R+,max,×, 0, 1) and maximizing
the resulting SPF S′. The MPE state can then be recovered
by a downward pass in S′, recursively selecting the (or a)
highest-valued child of each max node and all children of
each product node (Poon & Domingos, 2011). As when
translating an NNF for model counting, an SPN must
be selective (Peharz et al., 2014) (the SPN equivalent of
deterministic) for summation in the max-product semiring
to give the correct MPE.
Corollary 10. The MPE state of a selective, decomposable
SPN can be found in time linear in its size.

A sum node in an SPN can be viewed as the result of
summing out an implicit hidden variable Yv , whose val-
ues Yv = {yc}c∈Ch(v) correspond to Ch(v), the children of
v (Poon & Domingos, 2011). It is often of interest to find
the MPE state of both the hidden and observed variables.
This can be done in linear time and requires only that the
SPN be decomposable, because making each Yv explicit
by multiplying each child c of v by the indicator [Yv = yc]
makes the resulting SPN S(X,Y) selective.

D. Integration and optimization
Integration (continued). For non-decomposable SPFs,
DECOMPOSE must be altered to select only a finite number
of values and then use the trapezoidal rule for approximate
integration. Values can be chosen using grid search and if
S is Lipschitz continuous the grid spacing can be set such
that the error incurred by the approximation is bounded by
a pre-specified amount. This can significantly reduce the
number of values explored in SUMSPF if combined with
approximate decomposability (Section 4), since SUMSPF
can treat some non-decomposable product nodes as decom-
posable, avoiding the expensive call to DECOMPOSE while
incurring only a bounded integration error.

The Sum-Product Theorem: A Foundation for Learning Tractable Models (Supplementary Material)

E. Relational inference
Let X be a finite set of constants and let Rk = X k be the
complete relation1 of arity k on X , i.e., the set of all tuples
in X k, where X k is the Cartesian product of X with itself
k− 1 times. The universe of relations with arity up to m is
Um = 1R ∪

⋃m
i=1 2

Ri

, where 2R
k

is the power set of Rk

and 1R is the (identity) relation containing the empty tuple.
Since union distributes over join, and both are associative
and commutative, R = (Um,∪, ./,∅,1R) is a semiring
over relations, where ./ is natural join and ∅ is the empty
set (recall that R = R ./ 1R for any relation R). Given
an extensional database R = {Ri} containing relations Ri
of arity up to m, an SPF on R, referred to as a union-join
network (UJN), is a query on R. In a UJN Q, each Ri ∈ R
is composed of a union of joins of unary tuples, such that
Ri =

⋃
〈c1,...,cr〉∈Ri

./rj=1cj , where the leaves of Q are
the unary tuples cj . The Ri are then combined with unions
and joins to form the full UJN (query). A UJN Q(X) over
query variables X = (X1, . . . , Xn) defines an intensional
output relation Qans =

⋃
Xn Q(X). Clearly, computing

Qans corresponds to summation in R. Let nQJ denote the
maximum number of variables involved in a particular join
over all joins in Q. The corollary below follows immedi-
ately, since a decomposable join is a Cartesian product.
Corollary 11. Qans of a decomposable UJNQ can be com-
puted in time linear in the size of Q if nQJ is bounded.

Note that nQJ can be smaller than the treewidth of Q, since
Q composes the final output relation from many small re-
lations (starting with unary tuples) via a relational form of
determinism. Since the size of a UJN depends both on the
input relations and the query, this is a statement about the
combined complexity of queries defined by UJNs.

Regarding expressivity, selection in a UJN can be imple-
mented as a join with the relation Pσ ∈ Um, which
contains all tuples that satisfy the selection predicate σ.
Projection is not immediately supported by R, but since
union distributes over projection, it is straightforward to
extend the results of Theorem 1 to allow UJNs to con-
tain projection nodes. UJNs with projection correspond
to non-recursive Datalog queries (i.e., unions of conjunc-
tive queries), for which decomposable UJNs are a tractable
sub-class. Thus, SUMSPF defines a recursive algorithm for
evaluating non-recursive Datalog queries and the Generic-
Join algorithm (Ngo et al., 2014) – a recent join algorithm
that achieves worst-case optimal performance by recursing
on individual tuples – is an instance of DECOMPOSE.

Another consequence of the sum-product theorem is a
much simpler proof of the tractability of tractable Markov
logic (Domingos & Webb, 2012).

1A relation is a set of tuples; see Abiteboul et al. (1995) for
details on relational databases.

F. Relational probabilistic models
A tractable probabilistic knowledge base (TPKB) (Niepert
& Domingos, 2015; Webb & Domingos, 2013; Domin-
gos & Webb, 2012) is a set of class and object dec-
larations such that the classes form a forest and the
objects form a tree of subparts when given the leaf
class of each object. A class declaration for a class C

specifies the subparts Parts(C) = {Pi}, (weighted) sub-
classes Subs(C) = {Si}, attributes Atts(C) = {Ai}, and
(weighted) relations Rels(C) = {Ri}. The subparts of C
are parts that every object of class Cmust have and are spec-
ified by a name Pi, a class Ci, and a number ni of unique
copies. A class C with subclasses S1, . . . , Sj must belong
to exactly one of these subclasses, where the weights wi
specify the distribution over subclasses. Every attribute has
a domain Di and a weight function ui : Di → R. Each re-
lation Ri(. . .) has the form Ri(Pa, . . . , Pz) where each of
Pa, . . . , Pz is a part of C. Relations specify what relation-
ships may hold among the subparts. A weight vi on Ri
defines the probability that the relation is true. A relation
can also apply to the object as a whole, instead of to its
parts. Object declarations introduce evidence by specify-
ing an object’s subclass memberships, attribute values, and
relations as well as specifying the names and path of the
object from the top object in the part decomposition.

A TPKB K is a DAG of objects and their properties
(classes, attributes, and relations), and a possible world W
is a subtree of the DAG with values for the attributes and
relations. The literals are the class membership, attribute,
and relation atoms and their negations and thus specify the
subclasses of each object, the truth value of each relation,
and the value of each attribute. A single (root) top ob-
ject (O0, C0) has all other objects as descendants. No other
objects are of top class C0. The unnormalized distribu-
tion φ over possible subworlds W is defined recursively
as φ(O, C,W) = 0 if ¬Is(O, C) ∈W or if a relation R of C
is hard and ¬R(O, . . .) ∈W, and otherwise as

φ(O, C,W) =

 ∑
Si∈Subs(C)

ewiφ(O, Si,W)

×
 ∏

Pi∈Parts(C)

φ(O.Pi, Ci,W)

×
 ∏

Ai∈Atts(C)

α(O, Ai,W)

×
 ∏

Ri∈Rels(C)

ρ(O, Ri,W)

 , (1)

where α(O, Ai,W) = eui(D) if Ai(O, D) ∈ W and
ρ(O, Ri,W) = evi [Ri(. . .)] + [¬Ri(. . .)]. Note that

The Sum-Product Theorem: A Foundation for Learning Tractable Models (Supplementary Material)

Parts(C) contains all subparts of C, including all dupli-
cated parts. The probability of a possible world W is
1
ZK
φ(O0, C0,W) where the sub-partition function for (O, C)

is ZKO,C
=

∑
W∈W φ(O, C,W) and ZK = ZKO0,C0

.

By construction, φ(O0, C0,W) defines an SPN over the lit-
erals. With the sum-product theorem in hand, it is possible
to greatly simplify the two-page proof of tractability given
in Niepert & Domingos (2015), as we show here. To prove
that computing ZK is tractable it suffices to show that (1)
is decomposable or can be decomposed efficiently. We first
note that each of the four factors in (1) is decomposable,
since the first is a sum, the second is a product over the
subparts of O and therefore its subfunctions have disjoint
scopes, and the third and fourth are products over the at-
tributes and relations, respectively, and are decomposable
because none of the α or ρ share variables. It only remains
to show that the factors can be decomposed with respect
to each other without increasing the size of the SPN. Let
nO, nC , nr denote the number of object declarations, class
declarations, and relation rules, respectively. The SPN cor-
responding to φ(O0, C0,W) has sizeO(nO(nC+nr)), since
for each object (O, C) there are a constant number of edges
for each of its relations and subclasses. Similarly, K has
size |K| = O(nO(nC +nr). We can thus prove the follow-
ing result.

Corollary 12. The partition function of a TPKB can be
computed in time linear in its size.

G. Experiment details
All experiments were run on the same MacBook Pro with
2.2 GHz Intel Core i7 processor with 16 GB of RAM. Each
optimization was limited to a single thread.

The non-separable variant of the Rastrigin function (Torn
& Zilinskas, 1989) used on pairs of variables is defined as

fRxi,xj
(Yi, Yj) = c0[(Yi − xi)2 − (Yj − xj)2]+

c1 − c1 cos(Yi − xi) cos(Yj − xj),

which has a global minimum at y∗ = (xi, xj) with value
fRx (y∗) = 0. The constants c0 and c1 control the shape
of the quadratic basin and the amplitude of the sinusoids,
respectively. For our tests, we used c0 = 0.1 and c1 = 20.
Figure 1 shows a contour plot of fR.

Omitting the parameters x from fRx for simplicity, the full
test function for n = 4m variables is defined as

Fx(Y) =
m∑
i=0

fR(Y4i, Y4i+k) + fR(Y4i+3, Y4i+3−k),

where k = 1 with probability 0.5 and k = 2 otherwise.
This creates a function that is non-decomposable between

x
-10 -5 0 5 10

y

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 1. Contour plot of the 2-D nonconvex Rastrigin function.

each pair of variables (Y4i, Y4i+k) and (Y4i+3, Y4i+3−k).
For the simplest case with n = 4 variables, if k = 1
then pairs (Y0, Y1) and (Y2, Y3) are non-decomposable. Al-
ternatively, if k = 2 then pairs (Y0, Y2) and (Y1, Y3) are
non-decomposable. The global minimum (xi, xj) for each
function fRxi,xj

(Yi, Yj) was sampled uniformly over an in-
terval of length 2 from the line Yi = Yj with zero-mean
additive Gaussian noise (σ = 0.1). Thus, each instance of
Fx is highly nonconvex and is decomposable with respect
to certain variables and not with respect to others. For a set
of instances of Fx, there is structure in the decomposabil-
ity between variables, but different instances have different
decomposability structure, so LEARNSPF must first group
those function instances that have similar decomposability
structure and then identify that structure in order to learn a
min-sum function that is applicable to any instance in the
training data.

H. Proofs
Corollary 1. Every SPF with bounded treewidth can be
summed in time linear in the cardinality of its scope.

Proof. Let X = (X1, . . . , Xn), let (R,⊕,⊗, 0, 1) be
a commutative semiring, and let F (X) be an SPF with
bounded treewidth tw(F) = a for 0 < a < ∞. Let
S(X) be a tree-like SPF that is compatible with F and
has junction tree T = (T,Q) with treewidth tw(T) = a.
The size of the largest cluster in T is α = a + 1. Let
m = |Q| ≤ n and d = |Xv| for all Xv ∈ X. Fur-
ther, other than the root s ∈ S, there is a one-to-one cor-
respondence between separator instantiations sij ∈ XSij

The Sum-Product Theorem: A Foundation for Learning Tractable Models (Supplementary Material)

and sum nodes sij ∈ S, and between cluster instantiations
cj ∈ XCj and product nodes cj ∈ S. Now, the number of
edges in S can be obtained by counting the edges that cor-
respond to each edge in T and summing over all edges in
T , as follows. By construction, each edge (j, k) ∈ T cor-
responds to the product nodes {ck}; their children, which
are the leaf nodes (indicators and constants) and the sum
nodes {sjk}; and the children of {sjk}, which are the
product nodes {cj}. By definition, the {cj} have only a
single parent, so there are |XCj

| ≤ dα edges between
{sjk} and {cj}. Further, each ck has only |Ck| + 1 leaf
node children and |Ch(k)| sum node children, so there are
|XCk

|(|Ck|+1)(|Ch(k)|) ≤ dα(α+1)(|Ch(k)|) edges be-
tween {ck} and {sjk}. In addition, there are also XCr =
dα edges between the root s ∈ S and the product nodes
cr. Thus, since T is a tree with m − 1 edges, size(S) ≤
dα +

∑
(j,k)∈T 2dα(α+1)(|Ch(k)|) = O(mdα), which is

O(n). Since S is decomposable and has size O(n), then,
from the sum-product theorem, S can be summed in time
O(n). Furthermore, S is compatible with F , so F can be
summed in time O(n), and the claim follows.

Corollary 2. Not every SPF that can be summed in time
linear in the cardinality of its scope has bounded treewidth.

Proof. By counterexample. Let X = (X1, . . . , Xn) be
a vector of variables, (R,⊕,⊗, 0, 1) be a commutative
semiring, and k = |Xi| for all Xi ∈ X. The SPF
F (X) =

⊕r
j=1

⊗n
i=1 ψji(Xi) can be summed in time lin-

ear in n because F is decomposable and has size r(n+ 1).
At the same time, F (X) has treewidth n − 1 (i.e., un-
bounded) because there are no pairwise-disjoint subsets
A,B,C ⊆ X with domains XA,XB ,XC such that A
and B are conditionally independent in F given C, and
thus the smallest junction tree compatible with F (X) is
a complete clique over X. This can be seen as fol-
lows. Without loss of generality, let A ∪ B be the first
m variables in X, (X1, . . . , Xm). For any c ∈ XC ,
F (A,B, c) ∝

⊕r
j=1

⊗
i:Xi∈A∪B ψji(Xi) = (ψ11(X1)⊗

· · ·⊗ψ1m(Xm))⊕· · ·⊕(ψr1(X1)⊗· · ·⊗ψrm(Xm)). For
F (A,B, c) to factor, the terms in the right-hand side must
have common factors; however, in general, each ψji is dif-
ferent, so there are no such factors. Thus, F (A,B, c) 6=
F (A, c)⊗F (B, c) for all c ∈ XC , and there are no condi-
tional independencies in F .

Corollary 8. The model count of a deterministic, decom-
posable NNF can be computed in time linear in its size.

Proof. Let F (X) be a deterministic, decomposable NNF
and F ′(X) be F translated to the sum-product semiring.
Clearly, F and F ′ have equal size and F ′ is determinis-
tic and decomposable. Thus, from the sum-product theo-
rem,

∑
X F

′(X) takes time linear in the size of F . Let

v be a node in F and v′ its corresponding node in F ′. It
remains to show that

∑
X F

′
v(X) = #SAT(Fv(X)) for

all v, v′, which we do by induction. The base case with
v a leaf node holds trivially. For the induction step, as-
sume that

∑
Xi
F ′i (Xi) = #SAT(Fi(Xi)) for each child

ci ∈ Ch(v) (resp. c′i ∈ Ch(v′)). If v is an AND node
then v′ is a multiplication node and #SAT(Fv(X)) =
#SAT(

∧
ci
Fi(xi)) =

∏
ci
#SAT(Fi(xi)) =

∑
X F

′
v(X),

because v and v′ are decomposable. If v is an OR
node then v′ is an addition node and #SAT(Fv(X)) =
#SAT(

∨
ci
Fi(xi)) =

∑
ci
#SAT(Fi(xi)) =

∑
X F

′
v(X),

because v is deterministic, so its children are logically dis-
joint.

Corollary 10. The MPE state of a selective, decomposable
SPN can be found in time linear in its size.

Proof. Let S(X) be a selective, decomposable SPN and
S′(X) its max-product version, which has the same size
and is also selective and decomposable. For clarity, we as-
sume no evidence since it is trivial to incorporate. From
the sum-product theorem, maxX S

′(X) takes time linear
in the size of S. Let v be a node in S and v′ its correspond-
ing node in S′. It remains to show that maxX S

′
v(X) =

maxX S(X) for all v, v′, which we do by induction on
v. The base case with v a leaf holds trivially because v
and v′ are identical. For the induction step, assume that
maxXi

S′i(Xi) = maxXi
Si(Xi) for each child ci ∈ Ch(v)

(resp. c′i ∈ Ch(v′)). If v is a product node then so is v′ and
maxX S

′
v(X) = maxX Sv(X). If v is a sum node then v′

is a max node and maxX S(X) = maxx∈X
∑
ci
Si(xi) =

maxx∈X {maxci Si(xi)} = maxci{maxxi∈Xi Si(xi)} =
maxX S

′(X), where the second equality occurs because v
is selective. After summing S′, the MPE state is recovered
by a downward pass in S′, which takes linear time.

Corollary 11. The partition function of TPKB K can be
computed in time linear in its size.

Proof. The only sources of non-decomposability in (1) are
if an object (O, C) and one of its subclasses (O, Sj) both
contain (i) the same relation Ri(O, . . .) or (ii) the same at-
tribute Ai(O, D). Note that they cannot contain the same
part since two classes such that one is a descendant of
the other in the class hierarchy never have a part with
the same name. In each of the above cases, the shared
relation (or attribute) can be pushed into each subclass
(O,Sj) by distributing ρ(O, Ri,W) (or α(Ai, Ci,W)) over
the subclass sum and into each subclass (this can be re-
peated for multiple levels of the class hierarchy). This
makes the product over relations (attributes) in φ(O, Sj,W)
non-decomposable, but does not affect the decomposabil-
ity of any other objects. Now, φ(O, Sj,W) can be de-
composed, as follows. For (i), the product over relations
in φ(O, Sj,W) now contains the non-decomposable factor

The Sum-Product Theorem: A Foundation for Learning Tractable Models (Supplementary Material)

F (Ri) = ρ(O, Ri,W) · ρ′(O, Ri,W), where ρ′ was pushed
down from (O, C). However, F (Ri) = (ewi [Ri] + [¬Ri]) ·
(ew

′
i [Ri] + [¬Ri]) = ewi+w

′
i [Ri] + [¬Ri] since [a]2 = [a]

and [a][¬a] = 0 for a literal a. Thus, F (Ri) is simply
ρ(O, Ri,W) with weightwi+w′i for Ri, which results in the
same decomposable SPN structure with a different weight.
For (ii), let the weight function for attribute Ai of class C
with domain Di be ui and the weight function from the at-
tribute that was pushed down be u′i. To render this decom-
posable, simply replace ui with ui � u′i, the element-wise
product of the two weight functions. Again, decomposabil-
ity is achieved simply by updating the weight functions.
Decomposing (i) and (ii) each adds only a linear number of
edges to the original non-decomposable SPN, so the size of
the corresponding decomposable SPN is |K|. Thus, from
the sum-product theorem, computing the partition function
of TPKB K takes time linear in |K|.

References
Abiteboul, S., Hull, R., and Vianu, V. Foundations of

Databases. Addison-Wesley, 1995.

Bacchus, F., Dalmao, S., and Pitassi, T. Value elimination:
Bayesian inference via backtracking search. In Proceed-
ings of the 19th Annual Conference on Uncertainty in
Artificial Intelligence, pp. 20–28, 2002.

Bacchus, F., Dalmao, S., and Pitassi, T. Solving #SAT and
Bayesian inference with backtracking search. Journal of
Artificial Intelligence Research, 34:391–442, 2009.

Bayardo Jr., R. J. and Pehoushek, J. D. Counting models
using connected components. In Proceedings of the 17th
National Conference on Artificial Intelligence, pp. 157–
162, 2000.

Darwiche, A. On the tractable counting of theory models
and its application to truth maintenance and belief revi-
sion. Journal of Applied Non-Classical Logics, 11(1-2):
11–34, 2001a.

Darwiche, A. Decomposable negation normal form. Jour-
nal of the ACM, 48:608–647, 2001b.

Darwiche, A. Recursive conditioning. Artificial Intelli-
gence, 126:5–41, 2001c.

Darwiche, A. A differential approach to inference in
Bayesian networks. Journal of the ACM, 50:280–305,
2003.

Dechter, R. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence, 113:41–85, 1999.

Dechter, R. and Mateescu, R. AND/OR search spaces for
graphical models. Artificial intelligence, 171:73–106,
2007.

Domingos, P. and Webb, W. A. A tractable first-order prob-
abilistic logic. In Proceedings of the 26th Conference on
Artificial Intelligence, pp. 1902–1909, 2012.

Heras, F., Larrosa, J., and Oliveras, A. MiniMaxSAT: An
efficient weighted MAX-SAT solver. Journal of Artifi-
cial Intelligence Research, 31:1–32, 2008.

Lauritzen, S. L. and Spiegelhalter, D. J. Local computa-
tions with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Sta-
tistical Society, 50(2):157–224, 1988.

Lawler, E. L. and Wood, D. E. Branch-and-Bound Meth-
ods: A Survey. Operations Research, 14:699–719, 1966.

Ngo, H. Q., Ré, C., and Rudra, A. Skew strikes back. ACM
SIGMOD Record, 42(4):5–16, 2014.

Niepert, M. and Domingos, P. Learning and inference in
tractable probabilistic knowledge bases. In Proceedings
of the 31st Conference on Uncertainty in Artificial Intel-
ligence, pp. 632–641, 2015.

Peharz, R., Gens, R., and Domingos, P. Learning selective
sum-product networks. In Proceedings of the ICML-14
Workshop on Learning Tractable Probabilistic Models,
2014.

Poon, H. and Domingos, P. Sum-product networks: A new
deep architecture. In Proceedings of the 27th Conference
on Uncertainty in Artificial Intelligence, pp. 337–346.
AUAI Press, 2011.

Rooshenas, A. and Lowd, D. Learning sum-product net-
works with direct and indirect variable interactions. In
Proceedings of the 31st International Conference on Ma-
chine Learning, pp. 710–718, 2014.

Sang, T., Bacchus, F., Beame, P., Kautz, H., and Pitassi,
T. Combining component caching and clause learning
for effective model counting. In Proceedings of the In-
ternational Conference on Theory and Applications of
Satisfiability Testing, 2004.

Sang, T., Beame, P., and Kautz, H. A dynamic approach
to MPE and weighted MAX-SAT. In Proceedings of the
20th International Joint Conference on Artificial Intelli-
gence, pp. 173–179, 2007.

Torn, A. and Zilinskas, A. Global Optimization. Springer-
Verlag, 1989.

Webb, W. A. and Domingos, P. Tractable probabilistic
knowledge bases with existence uncertainty. In Proceed-
ings of the UAI-13 International Workshop on Statistical
Relational AI, 2013.

