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Abstract
Continuous optimization is an important problem
in many areas of AI, including vision, robotics,
probabilistic inference, and machine learning. Un-
fortunately, most real-world optimization problems
are nonconvex, causing standard convex techniques
to find only local optima, even with extensions
like random restarts and simulated annealing. We
observe that, in many cases, the local modes of
the objective function have combinatorial structure,
and thus ideas from combinatorial optimization can
be brought to bear. Based on this, we propose
a problem-decomposition approach to nonconvex
optimization. Similarly to DPLL-style SAT solvers
and recursive conditioning in probabilistic infer-
ence, our algorithm, RDIS, recursively sets vari-
ables so as to simplify and decompose the objec-
tive function into approximately independent sub-
functions, until the remaining functions are simple
enough to be optimized by standard techniques like
gradient descent. The variables to set are chosen by
graph partitioning, ensuring decomposition when-
ever possible. We show analytically that RDIS
can solve a broad class of nonconvex optimiza-
tion problems exponentially faster than gradient de-
scent with random restarts. Experimentally, RDIS
outperforms standard techniques on problems like
structure from motion and protein folding.

1 Introduction
AI systems that interact with the real world often have to
solve continuous optimization problems. For convex prob-
lems, which have no local optima, many sophisticated algo-
rithms exist. However, most continuous optimization prob-
lems in AI and related fields are nonconvex, and often have an
exponential number of local optima. For these problems, the
standard solution is to apply convex optimizers with multi-
start and other randomization techniques [Schoen, 1991], but
in problems with an exponential number of optima these typ-
ically fail to find the global optimum in a reasonable amount
of time. Branch and bound methods can also be used, but
scale poorly due to the curse of dimensionality [Neumaier et
al., 2005].

In this paper we propose that such problems can instead be
approached using problem decomposition techniques, which
have a long and successful history in AI for solving dis-
crete problems (e.g, [Davis et al., 1962; Darwiche, 2001;
Bayardo Jr. and Pehoushek, 2000; Sang et al., 2004; 2005;
Bacchus et al., 2009]). By repeatedly decomposing a prob-
lem into independently solvable subproblems, these algo-
rithms can often solve in polynomial time problems that
would otherwise take exponential time. The main difficulty in
nonconvex optimization is the combinatorial structure of the
modes, which convex optimization and randomization are ill-
equipped to deal with, but problem decomposition techniques
are well suited to. We thus propose a novel nonconvex opti-
mization algorithm, which uses recursive decomposition to
handle the hard combinatorial core of the problem, leaving a
set of simpler subproblems that can be solved using standard
continuous optimizers.

The main challenges in applying problem decomposition
to continuous problems are extending them to handle contin-
uous values and defining an appropriate notion of local struc-
ture. We do the former by embedding continuous optimizers
within the problem decomposition search, in a manner remi-
niscent of satisfiability modulo theory solvers [De Moura and
Bjørner, 2011], but for continuous optimization, not decision
problems. We do the latter by observing that many continu-
ous objective functions are approximately locally decompos-
able, in the sense that setting a subset of the variables causes
the rest to break up into subsets that can be optimized nearly
independently. This is particularly true when the objective
function is a sum of terms over subsets of the variables, as
is typically the case. A number of continuous optimization
techniques employ a static, global decomposition (e.g., block
coordinate descent [Nocedal and Wright, 2006] and partially
separable methods [Griewank and Toint, 1981]), but many
problems only decompose locally and dynamically, which
our algorithm accomplishes.

For example, consider protein folding [Anfinsen, 1973;
Baker, 2000], the process by which a protein, consisting of
a chain of amino acids, assumes its functional shape. The
computational problem is to predict this final conformation
by minimizing a highly nonconvex energy function consisting
mainly of a sum of pairwise distance-based terms represent-
ing chemical bonds, electrostatic forces, etc. Physically, in
any conformation, an atom can only be near a small number



of other atoms and must be far from the rest; thus, many terms
are negligible in any specific conformation, but each term is
non-negligible in some conformation. This suggests that sec-
tions of the protein could be optimized independently if the
terms connecting them were negligible but that, at a global
level, this is never true. However, if the positions of a few
key atoms are set appropriately then certain amino acids will
never interact, making it possible to decompose the problem
into multiple independent subproblems and solve each sepa-
rately. A local recursive decomposition algorithm for contin-
uous problems can do exactly this.

We first define local structure and then present our al-
gorithm, RDIS, which (asymptotically) finds the global
optimum of a nonconvex function by (R)ecursively
(D)ecomposing the function into locally (I)ndependent
(S)ubspaces. In our analysis, we show that RDIS achieves an
exponential speedup versus traditional techniques for non-
convex optimization such as gradient descent with restarts
and grid search (although the complexity remains exponen-
tial, in general). This result is supported empirically, as RDIS
significantly outperforms standard nonconvex optimization
algorithms on three challenging domains: structure from mo-
tion, highly multimodal test functions, and protein folding.

2 Recursive Decomposition for Continuous
Optimization

This section presents our nonconvex optimization algorithm,
RDIS. We first present our notation and then define local
structure and a method for realizing it. We then describe
RDIS and provide pseudocode.

In unconstrained optimization, the goal is to minimize an
objective function f(x) over the variables x ∈ Rn. We fo-
cus on functions f : Rn → R that are continuously differen-
tiable and have a nonempty optimal set x∗ with optimal value
f∗ = f(x∗) > −∞. Let I = {1, . . . , n} be the indices of
x, let C ⊆ I, let xC ∈ R|C| be the restriction of x to the
indices in C, and let ρC ∈ domain(xC) be a partial assign-
ment where only the variables corresponding to the indices
in C are assigned values. We define x|ρC ∈ Rn−|C| to be
the subspace where those variables with indices in C are set
to the values in ρC (i.e., for some ρC and for all i ∈ C we
have x|ρC ,i = ρC,i). Given U = I\C and partial assign-
ment ρC , then, with a slight abuse of notation, we define the
restriction of the function to the domain x|ρC as f |ρC (xU ).
In the following, we directly partition x instead of discussing
the partition of I that induces it.

2.1 Local structure
A function is fully decomposable (separable) if it can be ex-
pressed as f(x) =

∑n
i=1 gi(xi). Such functions are easy to

optimize, since they decompose with respect to minimization;
i.e., minx f(x) =

∑n
i=1 minxi gi(xi). Conversely, decom-

posable nonconvex functions that are optimized without first
decomposing them require exponentially more exploration to
find the global optimum than the decomposed version. For
example, let Mf be the set of modes of f and let Mi be the
modes of each gi. Knowing that f is decomposable allows us
to optimize each gi independently, giving |Mf | =

∑n
i=1 |Mi|

modes to explore. However, if we instead optimized f di-
rectly, we would have to explore

∏n
i=1 |Mi| modes, which

is exponential in n. Unfortunately, fully decomposable func-
tions like f are rare, as variables generally appear in multiple
terms with many different variables and thus the minimiza-
tion does not trivially distribute. However, decomposition
can still be achieved if the function exhibits global or local
structure, which we define here.

Definition 1.
(a) f(x) is globally decomposable if there exists a partition

{xC ,xU1
,xU2

} of x such that, for every partial assignment
ρC , f |ρC (xU1

,xU2
) = f1|ρC (xU1

) + f2|ρC (xU2
).

(b) f(x) is locally decomposable in the sub-
space x|ρC if there exists a partition {xC ,xU1

,xU2
}

of x and a partial assignment ρC such that
f |ρC (xU1

,xU2
) = f1|ρC (xU1

) + f2|ρC (xU2
).

(c) f(x) is approximately locally decomposable in
a neighbourhood of the subspace x|ρC if there exists
a partition {xC ,xU1 ,xU2} of x, partial assignments
ρC , σC , and δ, ε ≥ 0 such that if ||σC − ρC || ≤ δ then
|f |σC

(xU1 ,xU2)− [f1|σC
(xU1) + f2|σC

(xU2)]| ≤ ε.
Global structure (Definition 1a), while the easiest to ex-

ploit, is also the least prevalent. Local structure, which
may initially appear limited, subsumes global structure while
also allowing different decompositions throughout the space,
making it strictly more general. Similarly, approximate local
structure subsumes local structure. In protein folding, for ex-
ample, two amino acids may be pushed either close together
or far apart for different configurations of other amino acids.
In the latter case, they can be optimized independently be-
cause the terms connecting them are negligible. Thus, for dif-
ferent partial configurations of the protein, different approx-
imate decompositions are possible. The independent sub-
spaces that result from local decomposition can themselves
exhibit local structure, allowing them to be decomposed in
turn. If an algorithm exploits local structure effectively, it
never has to perform the full combinatorial optimization. Lo-
cal structure does not need to exist everywhere in the space,
just in the regions being explored. For convenience, we only
refer to local structure below, unless the distinction between
global or (approximate) local decomposition is relevant.

One method for achieving local decomposition is via
(local) simplification. We say that fi(xC ,xU ) is (ap-
proximately locally) simplifiable in the subspace x|ρC de-
fined by partial assignment ρC if, for a given ε ≥ 0,
fi|ρC (xU )− fi|ρC (xU ) ≤ 2ε, where h(x) and h(x) refer to
the upper and lower bounds of h(x), respectively. Simi-
larly, f(x) is (approximately locally) simplified in the sub-
space x|ρC defined by partial assignment ρC if, for a given
ε ≥ 0, all simplifiable terms fi|ρC (xU ) are replaced by the
constant ki = 1

2 [fi|ρC (xU ) + fi|ρC (xU )]. For a function that
is a sum of terms, local decomposition occurs when some
of these terms simplify in such a way that the minimization
can distribute over independent groups of terms and variables
(like component decomposition in Relsat [Bayardo Jr. and
Pehoushek, 2000] or in the protein folding example above).
Given that there are m terms in the function, the maximum



possible error in the simplified function versus the true func-
tion is m · ε. However, this would require all terms to be
simplified and their true values to be at one of their bounds,
which is extremely unlikely; rather, errors in different terms
often cancel, and the simplified function tends to remain ac-
curate. Note that ε induces a tradeoff between acceptable er-
ror in the function evaluation and the computational cost of
optimization, since a simplified function has fewer terms and
thus evaluating it and computing its gradient are both cheaper.
While the above definition is for sums of terms, the same
mechanism applies to functions that are products of (non-
negative) factors, although error grows multiplicatively here.

2.2 The RDIS Algorithm
RDIS is an optimization method that explicitly finds and ex-
ploits local decomposition. Pseudocode is shown in Algo-
rithm 1, with subroutines explained in the text. At each level
of recursion, RDIS chooses a subset of the variables xC ⊆ x
(inducing a partition {xC ,xU} of x) and assigns them val-
ues ρC such that the simplified objective function f |ρC (xU )
decomposes into multiple (approximately) independent sub-
functions fi|ρC (xUi), where {xU1 , . . . ,xUk

} is a partition
of xU and 1 ≤ k ≤ n. RDIS then recurses on each sub-
function, globally optimizing it conditioned on the assign-
ment xC = ρC . When the recursion completes, RDIS uses
the returned optimal values (conditioned on ρC) of xU to
choose new values for xC and then simplifies, decomposes,
and optimizes the function again. This repeats until a heuris-
tic stopping criterion is satisfied.

Algorithm 1 Recursive Decomposition into locally Indepen-
dent Subspaces (RDIS).
Input: Function f , variables x, initial state x0, subspace op-

timizer S, and approximation error ε.
Output: (Approximate) global minimum f∗ at state x∗.

1: function RDIS(f,x,x0, S, ε)
2: xC ← CHOOSEVARS(x) // variable selection
3: xU ← x\xC , f∗ ←∞, x∗ ← x0

4: repeat
5: partition x∗ into {σ∗C , σ∗U}
6: ρC ← S( f |σ∗

U
(xC), σ

∗
C ) // value selection

7: f̂ |ρC (xU )← SIMPLIFY(f |ρC (xU ), ε)
8: {f̂i(xUi

)} ← DECOMPOSE(f̂ |ρC (xU ))
9: for i = 1, . . . , k do // recurse on the components

10: 〈f∗i , ρUi
〉 ← RDIS(f̂i,xUi

, σ∗Ui
, S, ε)

11: f∗ρ ←
∑k
i=1 f

∗
i , ρU ← ∪ki=1ρUi

12: if f∗ρ < f∗ then // record new minimum
13: f∗ ← f∗ρ , x∗ ← ρC ∪ ρU
14: until stopping criterion is satisfied
15: return 〈f∗,x∗〉

RDIS selects variables (line 2) heuristically, with the goal
of choosing a set of variables that enables the largest amount
of decomposition, as this provides the largest computational
gains. Specifically, RDIS uses a hypergraph partitioning al-
gorithm to determine a small cutset that will decompose the
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…&

Figure 1: Visualization of RDIS decomposing the objective func-
tion. Vertices (circles) represent variables and edges connect each
pair of variables in a term. Left: RDIS selects xC (shaded oval).
Middle: The function during simplification. Thick edges indicate
simplifiable terms. Assigned variables are constant and have been
removed. Right: The function after decomposition.

graph; this cutset becomes the selected variables, xC . Val-
ues for xC are determined (line 6) by calling a nonconvex
subspace optimizer with the remaining variables (xU ) fixed
to their current values. The subspace optimizer S is spec-
ified by the user and is customizable to the problem being
solved. In our experiments we used multi-start versions of
conjugate gradient descent and Levenberg-Marquardt [No-
cedal and Wright, 2006]. Restarts occur within line 6: if S
converges without making progress then it restarts to a new
point in xC and runs until it reaches a local minimum.

To simplify the objective function (line 7), RDIS deter-
mines which terms are simplifiable (i.e., have sufficiently
small bounds) and then simplifies (approximates) these by re-
placing them with a constant. These terms are not passed to
the recursive calls. After variables have been assigned and
the function simplified, RDIS locally decomposes (line 8) the
simplified function into independent sub-functions (compo-
nents) that have no overlapping terms or variables and thus
can be optimized independently, which is done by recursively
calling RDIS on each. See Figure 1 for a visualization of
this process. The recursion halts when CHOOSEVARS se-
lects all of x (i.e., xC = x and xU = ∅), which occurs
when x is small enough that the subspace optimizer can op-
timize f(x) directly. At this point, RDIS repeatedly calls the
subspace optimizer until the stopping criterion is met, which
(ideally) finds the global optimum of f |σ∗

U
(xC) = f(x) since

S is a nonconvex optimizer. The stopping criterion is user-
specified, and depends on the subspace optimizer. If a multi-
start descent method is used, termination occurs after a speci-
fied number of restarts, corresponding to a certain probability
that the global optimum has been found. If the subspace opti-
mizer is grid search, then the loop terminates after all values
of xC have been assigned. More subroutine details are pro-
vided in Section 4.

3 Analysis
We now present analytical results demonstrating the benefits
of RDIS versus standard algorithms for nonconvex optimiza-
tion. Formally, we show that RDIS explores the state space in
exponentially less time than the same subspace optimizer for
a class of functions that are locally decomposable, and that it
will (asymptotically) converge to the global optimum. Due to



space limitations, proofs are presented in the supplementary
material.1 Let the number of variables be n and the number
of values assigned by RDIS to xC be ξ(d), where d is the size
of xC . The form of ξ(d) depends on the subspace optimizer,
but can be roughly interpreted as the number of modes of the
sub-function f |σ∗

U
(xC) to explore times a constant factor.

Proposition 1. If, at each level, RDIS chooses xC ⊆ x of size
|xC | = d such that, for each selected value ρC , the simplified
function f̂ |ρC (xU ) locally decomposes into k > 1 indepen-
dent sub-functions {f̂i(xUi

)} with equal-sized domains xUi
,

then the time complexity of RDIS is O(nd ξ(d)
logk (n/d)).

Note that since RDIS uses hypergraph partitioning to choose
variables, it will always decompose the remaining variables
xU . This is also supported by our experimental results; if
there were no decomposition, RDIS would not perform any
better than the baselines.

From Proposition 1, we can compute the time complex-
ity of RDIS for different subspace optimizers. Let the sub-
space optimizer be grid search (GS) over a bounded domain
of width w with spacing δ in each dimension. Then the com-
plexity of grid search is simply O((w/δ)n) = O(sn).
Proposition 2. If the subspace optimizer is grid search, then
ξ(d) = (w/δ)d = sd, and the complexity of RDISGS is
O(nd s

d logk (n/d)).
Rewriting the complexity of grid search as O(sn) =
O(sd(n/d)), we see that it is exponentially worse than the
complexity of RDISGS when decomposition occurs.

Now consider a descent method with random restarts (DR)
as the subspace optimizer. Let the volume of the basin of at-
traction of the global minimum (the global basin) be ln and
the volume of the space be Ln. Then the probability of ran-
domly restarting in the global basin is (l/L)n = pn. Since
the restart behavior of DR is a Bernoulli process, the expected
number of restarts to reach the global basin is r = p−n, from
the shifted geometric distribution. If the number of iterations
needed to reach the stationary point of the current basin is τ
then the expected complexity of DR is O(τp−n). If DR is
used within RDIS, then we obtain the following result.
Proposition 3. If the subspace optimizer is DR, then the ex-
pected value of ξ(d) is τp−d, and the expected complexity of
RDISDR is O(nd (τp

−d)logk (n/d)).

Rewriting the expected complexity of DR as O(τ(p−d)n/d)
shows that RDISDR is exponentially more efficient than DR.

Regarding convergence, RDIS with ε = 0 converges to the
global minimum given certain conditions on the subspace op-
timizer. For grid search, RDISGS returns the global minimum
if the grid is finite and has sufficiently fine spacing. For gra-
dient descent with restarts, RDISDR will converge to station-
ary points of f(x) as long as steps by the subspace optimizer
satisfy two technical conditions. The first is an Armijo rule
guaranteeing sufficient decrease in f and the second guar-
antees a sufficient decrease in the norm of the gradient (see
(C1) and (C2) in the supplementary material). These condi-
tions are necessary to show that RDISDR behaves like an in-
exact Gauss-Seidel method [Bonettini, 2011], and thus each

1
http://cs.uw.edu/homes/pedrod/papers/ijcai15sp.pdf

limit point of the generated sequence is a stationary point of
f(x). Given this, we can state the probability with which
RDISDR will converge to the global minimum.
Proposition 4. If the non-restart steps of RDIS satisfy
(C1) and (C2), ε = 0, the number of variables is n, the vol-
ume of the global basin is v = ln, and the volume of the entire
space is V = Ln, then RDISDR returns the global minimum
after t restarts, with probability 1− (1− (v/V ))t.

For ε > 0, we do not yet have a proof of convergence,
even in the convex case, since preliminary analysis indicates
that there are rare corner cases in which the alternating aspect
of RDIS, combined with the simplification error, can poten-
tially result in a non-converging sequence of values; however,
we have not experienced this in practice. Furthermore, our
experiments clearly show ε > 0 to be extremely beneficial,
especially for large, highly-connected problems.

Beyond its discrete counterparts, RDIS is related to many
well-known continuous optimization algorithms. If all vari-
ables are chosen at the top level of recursion, then RDIS sim-
ply reduces to executing the subspace optimizer. If one level
of recursion occurs, then RDIS behaves similarly to alternat-
ing minimization algorithms (which also have global conver-
gence results [Grippo and Sciandrone, 1999]). For multiple
levels of recursion, RDIS has similarities to block coordinate
(gradient) descent algorithms (see Tseng and Yun [2009] and
references therein). However, what sets RDIS apart is that de-
composition in RDIS is determined locally, dynamically, and
recursively. Our analysis and experiments show that exploit-
ing this can lead to substantial performance improvements.

4 RDIS Subroutines
In this section, we present the specific choices we’ve made
for the subroutines in RDIS, but note that others are possible
and we intend to investigate them in future work.
Variable Selection. Many possible methods exist for choos-
ing variables. For example, heuristics from satisfiability may
be applicable (e.g., VSIDS [Moskewicz et al., 2001]). How-
ever, RDIS uses hypergraph partitioning in order to ensure
decomposition whenever possible. Hypergraph partitioning
splits a graph into k components of approximately equal size
while minimizing the number of hyperedges cut. To maxi-
mize decomposition, RDIS should choose the smallest block
of variables that, when assigned, decomposes the remaining
variables. This corresponds exactly to the set of edges cut
by hypergraph partitioning on a hypergraph that has a ver-
tex for each term and a hyperedge for each variable that con-
nects the terms that variable is in (note that this is the in-
verse of Figure 1). RDIS maintains such a hypergraph and
uses the PaToH hypergraph partitioning library [Çatalyürek
and Aykanat, 2011] to quickly find good, approximate parti-
tions. A similar idea was used in Darwiche and Hopkins 2001
to construct d-trees for recursive conditioning; however, they
only apply hypergraph partitioning once at the beginning,
whereas RDIS performs it at each level of the recursion.

While variable selection could be placed inside the loop, it
would repeatedly choose the same variables because hyper-
graph partitioning is based on the graph structure. However,
RDIS still exploits local decomposition because the variables



and terms at each level of recursion vary based on local struc-
ture. In addition, edge and vertex weights could be set based
on current bounds or other local information.
Value Selection. RDIS can use any nonconvex optimization
subroutine to choose values, allowing the user to pick an opti-
mizer appropriate to their domain. In our experiments, we use
multi-start versions of both conjugate gradient descent and
Levenberg-Marquardt, but other possibilities include Monte
Carlo search, quasi-Newton methods, and simulated anneal-
ing. We experimented with both grid search and branch and
bound, but found them practical only for easy problems. In
our experiments, we have found it helpful to stop the subspace
optimizer early, because values are likely to change again in
the next iteration, making quick, approximate improvement
more effective than slow, exact improvement.
Simplification and Decomposition. Simplification is per-
formed by checking whether each term (or factor) is simplifi-
able and, if it is, setting it to a constant and removing it from
the function. RDIS knows the analytical form of the function
and uses interval arithmetic [Hansen and Walster, 2003] as
a general method for computing and maintaining bounds on
terms to determine simplifiability. RDIS maintains the con-
nected components of a dynamic graph [Holm et al., 2001]
over the variables and terms (equivalent in structure to a factor
or co-occurrence graph). Components in RDIS correspond
exactly to the connected components in this graph. Assigned
variables and simplified terms are removed from this graph,
potentially inducing local decomposition.
Caching and Branch & Bound. RDIS’ similarity to model
counting algorithms suggests the use of component caching
and branch and bound (BnB). We experimented with these
and found them effective when used with grid search; how-
ever, they were not beneficial when used with descent-
based subspace optimizers, which dominate grid-search-
based RDIS on non-trivial problems. For caching, this is be-
cause components are almost never seen again, due to not re-
encountering variable values, even approximately. For BnB,
interval arithmetic bounds tended to be overly loose and no
bounding occurred. Our experience suggests that this is be-
cause the descent-based optimizer effectively focuses explo-
ration on the minima of the space, which are typically close
in value to the current optimum. However, we believe that fu-
ture work on caching and better bounds would be beneficial.

5 Experimental Results
We evaluated RDIS on three difficult nonconvex optimiza-
tion problems with hundreds to thousands of variables: struc-
ture from motion, a high-dimensional sinusoid, and protein
folding. Structure from motion is an important problem
in vision, while protein folding is a core problem in com-
putational biology. We ran RDIS with a fixed number of
restarts at each level, thus not guaranteeing that we found the
global minimum. For structure from motion, we compared
RDIS to that domain’s standard technique of Levenberg-
Marquardt (LM) [Nocedal and Wright, 2006] using the lev-
mar library [Lourakis, 2004], as well as to a block-coordinate
descent version (BCD-LM). In protein folding, gradient-
based methods are commonly used to determine the lowest
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Figure 2: Minimum value found in one hour for increasing sizes of
bundle adjustment problem (y-axis is log scale).

energy configuration of a protein, so we compared RDIS to
conjugate gradient descent (CGD) and a block-coordinate de-
scent version (BCD-CGD). CGD and BCD-CGD were also
used for the high-dimensional sinusoid. Blocks were formed
by grouping contextually-relevant variables together (e.g., in
protein folding, we never split up an amino acid). We also
compared to ablated versions of RDIS. RDIS-RND uses a
random variable selection heuristic and RDIS-NRR does not
use any internal random restarts (i.e., it functions as a convex
optimizer) but does have top-level restarts. In each domain,
the optimizer we compare to was also used as the subspace
optimizer in RDIS. All experiments were run on the same
cluster. Each computer in the cluster was identical, with two
2.33GHz quad core Intel Xeon E5345 processors and 16GB
of RAM. Each algorithm was limited to a single thread. Fur-
ther details can be found in the supplementary material.
Structure from Motion. Structure from motion is the prob-
lem of reconstructing the geometry of a 3-D scene from a set
of 2-D images of that scene. It consists of first determining
an initial estimate of the parameters and then performing non-
linear optimization to minimize the squared error between a
set of 2-D image points and a projection of the 3-D points
onto camera models [Triggs et al., 2000]. The latter, known
as bundle adjustment, is the task we focus on here. Global
structure exists, since cameras interact explicitly with points,
creating a bipartite graph structure that RDIS can decom-
pose, but (nontrivial) local structure does not exist because
the bounds on each term are too wide and tend to include∞.
The dataset used is the 49-camera, 7776-point data file from
the Ladybug dataset [Agarwal et al., 2010]

Figure 2 shows performance on bundle adjustment as a
function of the size of the problem, with a log scale y-axis.
Each point is the minimum error found after running each al-
gorithm for 5 hours. Each algorithm is given the same set
of restart states, but algorithms that converge faster may use
more of these. Since no local structure is exploited, Figure 2
effectively demonstrates the benefits of using recursive de-
composition with intelligent variable selection for nonconvex
optimization. Decomposing the optimization across indepen-
dent subspaces allows the subspace optimizer to move faster,
further, and more consistently, allowing RDIS to dominate
the other algorithms. Missing points are due to algorithms
not returning any results in the allotted time.
High-dimensional Sinusoid. The second domain is a highly-
multimodal test function defined as a multidimensional sinu-
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soid placed in the basin of a quadratic, with a small slope to
make the global minimum unique. The arity of this function
(i.e., the number of variables contained in each term) is con-
trolled parametrically. Functions with larger arities contain
more terms and dependencies, and thus are more challeng-
ing. A small amount of local structure exists in this problem.

In Figure 3, we show the current best value found versus
time. Each datapoint is from a single run of an algorithm
using the same set of top-level restarts, although, again, algo-
rithms that converge faster use more of these. RDIS outper-
forms all other algorithms, including RDIS-NRR. This is due
to the nested restart behavior afforded by recursive decom-
position, which allows RDIS to effectively explore each sub-
space and escape local minima. The poor initial performance
of RDIS for arities 8 and 12 is due to it being trapped in a local
minimum for an early variable assignment while performing
optimizations lower in the recursion. However, once the low-
level recursions finish it escapes and finds the best minimum
without ever performing a top level restart (Figure 2 in the
supplementary material contains the full trajectories).
Protein Folding. The final domain is sidechain placement
for protein folding with continuous angles between atoms.
Amino acids are composed of a backbone segment and a
sidechain. Sidechain placement requires setting the sidechain
angles with the backbone atoms fixed. It is equivalent to find-
ing the MAP assignment of a continuous pairwise Markov
random field (cf., Yanover et al. [2006]). Significant local
structure is present in this domain. Test proteins were se-
lected from the Protein Data Bank [Berman et al., 2000] with
sequence length 300-600 such that the sequences of any two
did not overlap by more than 30%.

Figure 4 shows the results of combining all aspects of
RDIS, including recursive decomposition, intelligent variable
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Figure 5: RDIS-NRR’s minimum energy found and total time taken
versus ε, on protein 3EEQ (ID 9). The x-axis is log scale.

selection, internal restarts, and local structure on a difficult
problem with significant local structure. Each algorithm is
run for 48 hours on each of 21 proteins of varying sizes. RDIS
is run with both ε = 1.0 and ε = 2.0 and both results are
shown on the figure. RDIS outperforms CGD and BCD-CGD
on all proteins, often by a very large amount.

Figure 5 demonstrates the effect of ε on RDIS for protein
folding. It shows the performance of RDIS-NRR as a func-
tion of ε, where performance is measured both by minimum
energy found and time taken. RDIS-NRR is used in order to
remove the randomness associated with the internal restarts of
RDIS, resulting in a more accurate comparison across multi-
ple runs. Each point on the energy curve is the minimum
energy found over the same 20 restarts. Each point on the
time curve is the total time taken for all 20 restarts. As ε in-
creases, time decreases because more local structure is being
exploited. In addition, minimum energy actually decreases
initially. We attribute this to the smoothing caused by in-
creased simplification, allowing RDIS to avoid minor local
minima in the objective function.

6 Conclusion
This paper proposed a new approach to solving hard noncon-
vex optimization problems based on recursive decomposition.
RDIS decomposes the function into approximately locally in-
dependent sub-functions and then optimizes these separately
by recursing on them. This results in an exponential reduc-
tion in the time required to find the global optimum. In our
experiments, we show that problem decomposition enables
RDIS to systematically outperform comparable methods.

Directions for future research include applying RDIS to
a wide variety of nonconvex optimization problems, further
analyzing its theoretical properties, developing new variable
and value selection methods, extending RDIS to handle hard
constraints, incorporating discrete variables, and using simi-
lar ideas for high-dimensional integration.
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