
Recursive Decomposition for Nonconvex Optimization
Supplementary Material

Abram L. Friesen and Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195, USA

{afriesen,pedrod}@cs.washington.edu

This supplement to the paper “Recursive Decomposition
for Nonconvex Optimization,”, published in IJCAI 2015, pro-
vides proofs for the results in the paper, additional implemen-
tation details on RDIS, and additional experimental details for
the results shown in the paper. The experimental details in-
clude additional figures that did not fit in the space allotted to
the main paper.

A Analysis Details
A.1 Complexity
RDIS begins by choosing a block of variables, xC . Assuming
that this choice is made heuristically using the PaToH library
for hypergraph partitioning, which is a multi-level technique,
then the complexity of choosing variables is linear (see Tri-
funović 2006, p. 81). Within the loop, RDIS chooses values
for xC , simplifies and decomposes the function, and finally
recurses. Let the complexity of choosing values using the
subspace optimizer be g(d), where |xC |= d, and let one call
to the subspace optimizer be cheap relative to n (e.g., com-
puting the gradient of f with respect to xC or taking a step
on a grid). Simplification requires iterating through the set
of terms and computing bounds, so is linear in the number
of terms, m. The connected components are maintained by
a dynamic graph algorithm [Holm et al., 2001] which has an
amortized complexity of O(log2(|V |)) per operation, where
|V | is the number of vertices in the graph. Finally, let the
number of iterations of the loop be a function of the dimen-
sion, ξ(d), since more dimensions generally require more
restarts.

Proposition 1. If, at each level, RDIS chooses xC ⊆ x of size
|xC |= d such that, for each selected value ρC , the simplified
function f̂ |ρC (xU) locally decomposes into k > 1 indepen-
dent sub-functions {f̂i(xUi)} with equal-sized domains xUi ,
then the time complexity of RDIS is O(nd ξ(d)

logk (n/d)).

Proof. Assuming that m is of the same order as n,
the recurrence relation for RDIS is T (n) = O(n) +
ξ(d)

[
g(d) +O(m) +O(n) +O(d log2(n)) + k T

(
n−d
k

)]
,

which can be simplified to T (n) = ξ(d)
[
k T

(
n
k

)
+O(n)

]
+

O(n). Noting that the recursion halts at T (d), the
solution to the above recurrence relation is then

T (n) = c1 (k ξ(d))
logk(n/d) + c2 n

∑logk(n/d)−1
r=0 ξ(d)r.

which is O
(
(k ξ(d))logk (n/d)

)
= O

(
n
d ξ(d)

logk (n/d)
)
.

A.2 Convergence
In the following, we refer to the basin of attraction of the
global minimum as the global basin. Formally, we define a
basin of attraction as follows.
Definition 1. The basin of attraction of a stationary point c
is the set of points B ⊆ Rn for which the sequence generated
by DR, initialized at x0 ∈ B, converges to c.

Intuitively, at each level of recursion, RDIS with ε = 0 par-
titions x into {xC ,xU}, sets values using the subspace opti-
mizer ρC for xC , globally optimizes f |ρC (xU) by recursively
calling RDIS, and repeats. When the non-restart steps of the
subspace optimizer satisfy two practical conditions (below)
of sufficient decrease in (1) the objective function (a standard
Armijo condition) and (2) the gradient norm over two succes-
sive partial updates, (i.e., conditions (3.1) and (3.3) of Bonet-
tini [2011]), then this process is equivalent to the 2-block
inexact Gauss-Seidel method (2B-IGS) described in Bonet-
tini [2011] (c.f., Grippo and Sciandrone [1999]; Cassioli
et al. [2013]), and each limit point of the sequence generated
by RDIS is a stationary point of f(x), of which the global
minimum is one, and reachable through restarts.

Formally, let superscript r indicate the recursion level,
with 0 ≤ r ≤ d, with r = 0 the top, and recall that
x
(r)
U =

{
x
(r+1)
C ,x

(r+1)
U

}
if there is no decomposition. The

following proofs focus on the no-decomposition case for clar-
ity; however, the extension to the decomposable case is trivial
since each sub-function of the decomposition is independent.
We denote applying the subspace optimizer to f(x) until the
stopping criterion is reached as S∗(f,x) and a single call to
the subspace optimizer as S1(f,x) and note that S∗(f,x), by
definition, returns the global minimum x∗ and that repeatedly
calling S1(f,x) is equivalent to calling S∗(f,x).

For convenience, we restate conditions (3.1) and (3.3)
from Bonettini [2011] (without constraints) on the sequence
{x(k)} generated by an iterative algorithm on blocks xi for
i = 1, . . . ,m, respectively as

f(x
(k+1)
1 , . . . ,x

(k+1)
i , . . . ,x(k)

m)

≤ f(x(k+1)
1 , . . . ,x

(k)
i + λ

(k)
i d(k)

i , . . . ,x(k)
m), (C1)

where λ(k)i is computed using Armijo line search and d(k)
i is

a feasible descent direction, and

||∇if(x(k+1)
1 , . . . ,x

(k+1)
i , . . . ,x(k)

m)||
≤ η||∇if(x(k+1)

1 , . . . ,x
(k+1)
i−1 , . . . ,x(k)

m)||,
i = 1, . . . ,m

||∇if(x(k+1)
1 , . . . ,x

(k+1)
i , . . . ,x(k+1)

m)||
≤ η||∇i−1f(x(k+1)

1 , . . . ,x
(k+1)
i−1 , . . . ,x(k)

m)||,
i = 2, . . . ,m

||∇1f(x
(k+2)
1 , . . . ,x

(k+1)
i , . . . ,x(k+1)

m)||
≤ η1−m||∇mf(x(k+1)

1 , . . . ,x(k+1)
m)||, (C2)

where η ∈ [0, 1) is a forcing parameter. See Bonettini [2011]
for further details. The inexact Gauss-Seidel method is de-
fined as every method that generates a sequence such that
these conditions hold and is guaranteed to converge to a crit-
ical point of f(x) when m = 2. Let RDISDR refer to
RDIS(f,x,x0, S = DR, ε = 0).

Proposition 2. If the non-restart steps of RDIS satisfy
(C1) and (C2), ε = 0, the number of variables is n, the vol-
ume of the global basin is v = ln, and the volume of the entire
space is V = Ln, then RDISDR returns the global minimum
after t restarts, with probability 1− (1− (v/V))t.

Proof. Step 1. Given a finite number of restarts, one of which
starts in the global basin, then RDISDR, with no recursion,
returns the global minimum and satisfies (C1) and (C2). This
can be seen as follows.

At r = 0, RDISDR chooses x
(0)
C = x0 and x

(0)
U = ∅

and repeatedly calls S1(f
(0),x

(0)
C). This is equivalent to call-

ing S∗(f (0),x
(0)
C) = S∗(f,x), which returns the global min-

imum x∗. Thus, RDISDR returns the global minimum. Re-
turning the global minimum corresponds to a step in the exact
Gauss-Seidel algorithm, which is a special case of the IGS al-
gorithm and, by definition, satisfies (C1) and (C2).

Step 2. Now, if the non-restart steps of S1(f,x) satisfy
(C1) and (C2), then RDISDR returns the global minimum.
We show this by induction on the levels of recursion.

Base case. From Step 1, we have that RDISDR(f (d),x(d))
returns the global minimum and satisfies (C1) and (C2),
since RDISDR does not recurse beyond this level.
Induction step. Assume that RDISDR(f (r+1),x(r+1))
returns the global minimum. We now show that
RDISDR(f (r),x(r)) returns the global minimum.
RDISDR(f (r),x(r)) first partitions x(r) into the two
blocks x

(r)
C and x

(r)
U and then iteratively takes the fol-

lowing two steps: ρ
(r)
C ← S1(f |(r)σ∗

U
(x

(r)
C)) and ρ

(r)
U ←

RDISDR(f |(r)ρC (xU)). The first simply calls the subspace
optimizer on ρ(r)C . The second is a recursive call equivalent
to RDISDR(f (r+1),x(r+1)), which, from our inductive
assumption, returns the global minimum ρ

(r)
U = x

(r)∗

U of
f |(r)ρC (xU) and satisfies (C1) and (C2). For S1(f |(r)σ∗

U
(x

(r)
C)),

RDISDR will never restart the subspace optimizer unless the

sequence it is generating converges. Thus, for each restart,
since there are only two blocks and both the non-restart
steps of S1(f |(r)σ∗

U
(x

(r)
C)) and the RDISDR(f |(r)ρC (xU)) steps

satisfy (C1) and (C2) then RDISDR is a 2B-IGS method and
the generated sequence converges to the stationary point of
the current basin. At each level, after converging, RDISDR
will restart, iterate until convergence, and repeat for a finite
number of restarts, one of which will start in the global basin
and thus converge to the global minimum, which is then
returned.

Step 3. Finally, since the probability of RDISDR starting
in the global basin is (v/V), then the probability of it not
starting in the global basin after t restarts is (1 − (v/V))t.
From above, we have that RDISDR will return the global
minimum if it starts in the global basin, thus RDISDR will
return the global minimum after t restarts with probability
1− (1− (v/V))t.

B RDIS Subroutine Details
B.1 Variable Selection
In hypergraph partitioning, the goal is to split the graph into
k components of approximately equal size while minimizing
the number of hyperedges cut. Similarly, in order to maxi-
mize decomposition, RDIS should choose the smallest block
of variables that, when assigned, decomposes the remain-
ing variables. Accordingly, RDIS constructs a hypergraph
H = (V,E) with a vertex for each term, {ni ∈ V : fi ∈ f}
and a hyperedge for each variable, {ej ∈ E : xj ∈ x}, where
each hyperedge ej connects to all vertices ni for which the
corresponding term fi contains the variable xj . Partitioning
H , the resulting cutset will be the smallest set of variables
that need to be removed in order to decompose the hyper-
graph. And since assigning a variable to a constant effec-
tively removes it from the optimization (and the hypergraph),
the cutset is exactly the set that RDIS chooses on line 2.

B.2 Execution time
Variable selection typically occupies only a tiny fraction of
the runtime of RDIS, with the vast majority of RDIS’ exe-
cution time spent computing gradients for the subspace opti-
mizer. A small, but non-negligible amount of time is spent
maintaining the component graph, but this is much more effi-
cient than if we were to recompute the connected components
each time, and the exponential gains from decomposition are
well worth the small upkeep costs.

C Experimental Details
All experiments were run on the same compute cluster. Each
computer in the cluster was identical, with two 2.33GHz quad
core Intel Xeon E5345 processors and 16GB of RAM. Each
algorithm was limited to a single thread.

C.1 Structure from Motion
In the structure from motion task (bundle adjustment [Triggs
et al., 2000]), the goal is to minimize the error between a
dataset of points in a 2-D image and a projection of fitted 3-
D points representing a scene’s geometry onto fitted camera

−10

0

10

−10
0

10
−20

0

20

40

xy

Figure 1: A 2-D example of the highly multimodal test function.

models. The variables are the parameters of the cameras and
the positions of the points and the cameras. This problem
is highly-structured in a global sense: cameras only interact
explicitly with points, creating a bipartite graph structure that
RDIS is able to exploit. The dataset used is the 49-camera,
7776-point data file from the Ladybug dataset [Agarwal et al.,
2010], where the number of points is scaled proportionally to
the number of cameras used (i.e., if half the cameras were
used, half of the points were included). There are 9 variables
per camera and 3 variables per point.

C.2 Highly Multimodal Test Function
The test function is defined as follows. Given a height h, a
branching factor k, and a maximum arity a, we define a com-
plete k-ary tree of variables of the specified height, with x0
as the root. For all paths pj ∈ P in the tree of length lj ≤ a,
with lj even, we define a term tpj =

∏
xi∈pj sin(xi). The

test function is fh,k,a(x0, . . . , xn) =
∑n
i=1 c0xi + c1x

2
i +

c2
∑
P tpj . The resulting function is a multidimensional si-

nusoid placed in the basin of a quadratic function parameter-
ized by c1, with a linear slope defined by c0. The constant c2
controls the amplitude of the sinusoids. For our tests, we used
c0 = 0.6, c1 = 0.1, and c2 = 12. A 2-D example of this func-
tion is shown in Figure 1. We used a tree height of h = 11,
with branching factor k = 2, resulting in a function of 4095
variables. We evaluated each of the algorithms on functions
with terms of arity a ∈ {4, 8, 12}, where a larger arity de-
fines more complex dependencies between variables as well
as more terms in the function. The functions for the three
different arity levels had 16372, 24404, and 30036 terms, re-
spectively.

Figure 2 shows the value of the current state for each algo-
rithm over its entire execution. These are the trajectories for
Figure 3 of the main paper.

C.3 Protein Folding
Problem details
Protein folding [Anfinsen, 1973; Baker, 2000] is the process
by which a protein, consisting of a long chain of amino acids,
assumes its functional shape. The computational problem is

Time (seconds)
0 500 1000 1500 2000 2500 3000 3500

C
u
rr

e
n
t
m

in
im

u
m

 v
a
lu

e
 (

re
la

ti
v
e
 t
o
 b

e
s
t)

×10
5

0

1

2

3

4

5

6
CGD
BCD-CGD
RDIS-NRR
RDIS
arity 4
arity 8
arity 12

Figure 2: Trajectories on the test function for the data in Figure 3
in the main paper. Sharp rises show restarts. Notably, RDIS-NRR
restarts much more often than the other algorithms because decom-
position allows it to move through the space much more efficiently.
Without internal restarting it gets stuck at the same local minima
as BCD-CGD and CGD. For arity 12, RDIS never performs a full
restart and still finds the best minimum, despite using the same ini-
tial point as the other algorithms.

to predict this final conformation given a known sequence of
amino acids. This requires minimizing an energy function
consisting mainly of a sum of pairwise distance-based terms
representing chemical bonds, hydrophobic interactions, elec-
trostatic forces, etc., where, in the simplest case, the variables
are the relative angles between the atoms. The optimal state is
typically quite compact, with the amino acids and their atoms
bonded tightly to one another and the volume of the protein
minimized. Each amino acid is composed of a backbone seg-
ment and a sidechain, where the backbone segment of each
amino acid connects to its neighbors in the chain, and the
sidechains branch off the backbone segment and form bonds
with distant neighbors. The sidechain placement task is to
predict the conformation of the sidechains when the backbone
atoms are fixed in place.

Energies between amino acids are defined by the Lennard-
Jones potential function, as specified in the Rosetta protein
folding library [Leaver-Fay et al., 2011]. The basic form
of this function is ELJ(r) = A

r12 −
B
r6 , where r is the dis-

tance between two atoms and A and B are constants that
vary for different types of atoms. The Lennard-Jones poten-
tial in Rosetta is modified slightly so that it behaves better
when r is very large or very small. The full energy func-
tion is E(φ) =

∑
φEjk(Rj(

χ
j), Rk(χk)), where Rj is an

amino acid (also called a residue) in the protein, φ is the set
of all torsion angles, and φi ∈ χj are the angles for Rj . Each
residue has between zero and four torsion angles that define
the conformation of its sidechain, depending on the type of
amino acid. The termsEjk compute the energy between pairs
of residues as Ejk =

∑
aj

∑
ak
ELJ(r(aj(χj), ak(χk))),

where aj and ak refer to the positions of the atoms in residues
j and k, respectively, and r(aj , ak) is the distance between
the two atoms. The torsion angles define the positions of the
atoms through a series of kinematic relations, which we do
not detail here.

The smallest (with respect to the number of terms) pro-
tein (ID 1) has 131 residues, 2282 terms, and 257 variables,
while the largest (ID 21) has 440 residues, 9380 terms, and
943 variables. The average number of residues, terms, and
variables is 334, 7110, and 682, respectively. The proteins

with their IDs from the paper are as follows: (1) 4JPB, (2)
4IYR, (3) 4M66, (4) 3WI4, (5) 4LN9, (6) 4INO, (7) 4J6U,
(8) 4OAF, (9) 3EEQ, (10) 4MYL, (11) 4IMH, (12) 4K7K,
(13) 3ZPJ, (14) 4LLI, (15) 4N08, (16) 2RSV, (17) 4J7A, (18)
4C2E, (19) 4M64, (20) 4N4A, (21) 4KMA.

References
[Agarwal et al., 2010] Sameer Agarwal, Noah Snavely, Steven M.

Seitz, and Richard Szeliski. Bundle adjustment in the large. In
Kostas Daniilidis, Petros Maragos, and Nikos Paragios, editors,
Computer Vision ECCV 2010, volume 6312 of Lecture Notes
in Computer Science, pages 29–42. Springer Berlin Heidelberg,
2010.

[Anfinsen, 1973] Christian B. Anfinsen. Principles that govern the
folding of protein chains. Science, 181(4096):223–230, 1973.

[Baker, 2000] David Baker. A surprising simplicity to protein fold-
ing. Nature, 405:39–42, 2000.

[Bonettini, 2011] Silvia Bonettini. Inexact block coordinate de-
scent methods with application to non-negative matrix factor-
ization. IMA Journal of Numerical Analysis, 31(4):1431–1452,
2011.

[Cassioli et al., 2013] A Cassioli, D Di Lorenzo, and M Scian-
drone. On the convergence of inexact block coordinate descent
methods for constrained optimization. European Journal of Op-
erational Research, 231(2):274–281, 2013.

[Grippo and Sciandrone, 1999] Luigi Grippo and Marco Scian-
drone. Globally convergent block-coordinate techniques for un-
constrained optimization. Optimization Methods and Software,
10(4):587–637, 1999.

[Holm et al., 2001] Jacob Holm, Kristian De Lichtenberg, and
Mikkel Thorup. Poly-logarithmic deterministic fully-dynamic al-
gorithms for connectivity, minimum spanning tree, 2-edge, and
biconnectivity. Journal of the ACM (JACM), 48(4):723–760,
2001.

[Leaver-Fay et al., 2011] Andrew Leaver-Fay, Michael Tyka,
Steven M Lewis, Oliver F Lange, James Thompson, Ron Jacak,
Kristian Kaufman, P Douglas Renfrew, Colin A Smith, Will
Sheffler, et al. ROSETTA3: an object-oriented software suite
for the simulation and design of macromolecules. Methods in
Enzymology, 487:545–574, 2011.

[Trifunović, 2006] Aleksandar Trifunović. Parallel algorithms for
hypergraph partitioning. Ph.D., University of London, February
2006.

[Triggs et al., 2000] Bill Triggs, Philip F. McLauchlan, Richard I.
Hartley, and Andrew W. Fitzgibbon. Bundle adjustment – a mod-
ern synthesis. In Vision Algorithms: Theory and Practice, pages
298–372. Springer, 2000.

