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Abstract

How does the brain combine prior knowledge with sensory evidence when making
decisions under uncertainty? Two competing descriptive models have been pro-
posed based on experimental data. The first posits an additive offset to a decision
variable, implying a static effect of the prior. However, this model is inconsistent
with recent data from a motion discrimination task involving temporal integration
of uncertain sensory evidence. To explain this data, a second model has been pro-
posed which assumes a time-varying influence of the prior. Here we present a
normative model of decision making that incorporates prior knowledge in a prin-
cipled way. We show that the additive offset model and the time-varying prior
model emerge naturally when decision making is viewed within the framework
of partially observable Markov decision processes (POMDPs). Decision making
in the model reduces to (1) computing beliefs given observations and prior in-
formation in a Bayesian manner, and (2) selecting actions based on these beliefs
to maximize the expected sum of future rewards. We show that the model can
explain both data previously explained using the additive offset model as well as
more recent data on the time-varying influence of prior knowledge on decision
making.

1 Introduction

A fundamental challenge faced by the brain is to combine noisy sensory information with prior
knowledge in order to perceive and act in the natural world. It has been suggested (e.g., [1, 2, 3, 4])
that the brain may solve this problem by implementing an approximate form of Bayesian inference.
These models however leave open the question of how actions are chosen given probabilistic repre-
sentations of hidden state obtained through Bayesian inference. Daw and Dayan [5, 6] were among
the first to study decision theoretic and reinforcement learning models with the goal of interpreting
results from various neurobiological experiments. Bogacz and colleagues proposed a model that
combines a traditional decision making model with reinforcement learning [7] (see also [8, 9]).

In the decision making literature, two apparently contradictory models have been suggested to ex-
plain how the brain utilizes prior knowledge in decision making: (1) a model that adds an offset to a
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decision variable, implying a static effect of changes to the prior probability [10, 11, 12], and (2) a
model that adds a time varying weight to the decision variable, representing the changing influence
of prior probability over time [13]. The LATER model (Linear Approach to Threshold with Ergodic
Rate), an instance of the additive offset model, incorporates prior probability as the starting point
of a linearly rising decision variable and successfully predicts changes to saccade latency when dis-
criminating between two low contrast stimuli [10]. However, the LATER model fails to explain data
from the random dots motion discrimination task [14] in which the agent is presented with noisy,
time-varying stimuli and must continually process this data in order to make a correct choice and
receive reward. The drift diffusion model (DDM), which uses a random walk accumulation, instead
of a linear rise to a boundary, has been successful in explaining behavioral and neurophysiological
data in various perceptual discrimination tasks [14, 15, 16]. However, in order to explain behavioral
data from recent variants of random dots tasks in which the prior probability of motion direction is
manipulated [13], DDMs require the additional assumption of dynamic reweighting of the influence
of the prior over time.

Here, we present a normative framework for decision making that incorporates prior knowledge and
noisy observations under a reward maximization hypothesis. Our work is inspired by models which
cast human and animal decision making in a rational, or optimal, framework. Frazier & Yu [17]
used dynamic programming to derive an optimal strategy for two-alternative forced choice tasks
under a stochastic deadline. Rao [18] proposed a neural model for decision making based on the
framework of partially observable Markov decision processes (POMDPs) [19]; the model focuses
on network implementation and learning but assumes a fixed deadline to explain the collapsing
decision threshold seen in many decision making tasks. Drugowitsch et al. [9] sought to explain
the collapsing decision threshold by combining a traditional drift diffusion model with reward rate
maximization; their model also requires knowledge of decision time in hindsight. In this paper,
we derive a novel POMDP model from which we compute the optimal behavior for sequential
decision making tasks. We demonstrate our model’s explanatory power on two such tasks: the
random dots motion discrimination task [13] and Carpenter and Williams’ saccadic eye movement
task [10]. We show that the urgency signal, hypothesized in previous models, emerges naturally as a
collapsing decision boundary with no assumption of a decision deadline. Furthermore, our POMDP
formulation enables incorporation of partial or incomplete prior knowledge about the environment.
By fitting model parameters to the psychometric function in the neutral prior condition (equal prior
probability of either direction), our model accurately predicts both the psychometric function and
the reaction times for the biased (unequal prior probability) case, without introducing additional free
parameters. Finally, the same model also accurately predicts the effect of prior probability changes
on the distribution of reaction times in the Carpenter and Williams task, data that was previously
interpreted in terms of the additive offset model.

2 Decision Making in a POMDP framework

2.1 Model Setup

We model a decision making task using a POMDP, which assumes that at any particular time step,
t, the environment is in a particular hidden state, x ∈ X , that is not directly observable by the
animal. The animal can make sensory measurements in order to observe noisy samples of this hidden
state. At each time step, the animal receives an observation (stimulus), st, from the environment as
determined by an emission distribution, Pr(st|x). The animal must maintain a belief over the set
of possible true world states, given the observations it has made so far: bt(x) = Pr(x|s1:t), where
s1:t represents the sequence of stimuli that the animal has received so far, and b0(x) represents
the animal’s prior knowledge about the environment. At each time step, the animal chooses an
action, a ∈ A and receives an observation and a reward, R(x, a), from the environment, depending
on the current state and the action taken. The animal uses Bayes rule to update its belief about the
environment after each observation. Through these interactions, the animal learns a policy, π(b) ∈ A
for all b, which dictates the action to take for each belief state. The goal is to find an optimal policy,
π∗(b), that maximizes the animal’s total expected future reward in the task.

For example, in the random dots motion discrimination task, the hidden state, x, is composed of
both the coherence of the random dots c ∈ [0, 1] and the direction d ∈ {−1, 1} (corresponding
to leftward and rightward motion, respectively), neither of which are known to the animal. The
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animal is shown a movie of randomly moving dots, a fraction of which are moving in the same
direction (this fraction is the coherence). The movie is modeled as a sequence of time varying
stimuli s1:t. Each frame, st, is a snapshot of the changes in dot positions, sampled from the emission
distribution st ∼ Pr(st|kc, d), where k > 0 is a free parameter that determines the scale of st.
In order to discriminate the direction given the stimuli, the animal uses Bayes rule to compute the
posterior probability of the static joint hidden state, Pr(x = kdc|s1:t)1. At each time step, the animal
chooses one of three actions, a ∈ {AR, AL, AS}, denoting rightward eye movement, leftward eye
movement, and sampling (i.e., waiting for one more observation), respectively. When the animal
makes a correct choice (i.e., a rightward eye movement a = AR when x > 0 or a leftward eye
movement a = AL when x < 0), the animal receives a positive reward RP > 0. The animal
receives a negative reward (penalty) or no reward when an incorrect action is chosen, RN ≤ 0. We
assume that the animal is motivated by hunger or thirst to make a decision as quickly as possible
and model this with a unit penalty RS = −1, representing the cost the agent needs to pay when
choosing the sampling action AS .

2.2 Bayesian Inference of Hidden State from Prior Information and Noisy Observations

In a POMDP, decisions are made based on the belief state bt(x) = Pr(x|s1:t), which is the posterior
probability distribution over x given a sequence of observations s1:t. The initial belief b0(x) repre-
sents the animal’s prior knowledge about x. In both the Carpenter and William’s task [10] and the
random dots motion discrimination task [13], prior information about the probability of a specific
direction (we use rightward direction here, dR, without loss of generality) is learned by the subjects,
Pr(dR) = Pr(d = 1) = Pr(x > 0) = 1 − Pr(dL). Consider the random dots motion discrimina-
tion task. Unlike the traditional case where a full prior distribution is given, this direction-only prior
information provides only partial knowledge about the hidden state which also includes coherence.
In the least informative case, only Pr(dR) is known and we model the distribution over the remain-
ing components of x as a uniform distribution. Combining this with the direction prior, which is
Bernoulli distributed, gives a piecewise uniform distribution for the prior, b0(x). In the general case,
we can express the distribution over coherence as a normal distribution parameterized by µ0 and σ0,
resulting in a piecewise normal prior over x,

b0(x) = Z−10 N (x | µ0, σ0)×
{

Pr(dR) x ≥ 0

Pr(dL) x < 0,
(1)

where Zt = Pr(dR)(1 − Φ (0 | µt, σt)) + Pr(dL)Φ (0 | µt, σt) is the normalization factor and
Φ(x | µ, σ) =

∫ x
−∞N (x | µ, σ)dx is the cumulative distribution function (CDF) of the normal

distribution. The piecewise uniform prior is then just a special case with µ0 = 0 and σ0 =∞.

We assume the emission distribution is also normally-distributed, Pr(st|x) = N (st|x, σ2
e), which,

from Bayes’ rule, results in a piecewise normal posterior distribution

bt(x) = Z−1t N (x | µt, σt)×
{

Pr(dR) x ≥ 0

Pr(dL) x < 0
(2)

where µt =

(
µ0

σ2
0

+
ts̄t
σ2
e

)
/

(
1

σ2
0

+
t

σ2
e

)
, (3)

σ2
t =

(
1

σ2
0

+
t

σ2
e

)−1
, (4)

and the running average s̄t =
∑t
t′=1 st′/t. Consequently, the posterior distribution depends only on

s̄ and t, the two sufficient statistics of the sequence s1:t. For the case of a piecewise uniform prior,
the variance σ2

t =
σ2
e

t , which decreases inversely in proportion to elapsed time. Unless otherwise
mentioned, we fix σe = 1, σ0 =∞ and µ0 = 0 for the rest of this paper because we can rescale the
POMDP time step t′ = t

σe
to compensate.

1In the decision making tasks that we model in this paper, the hidden state is fixed within a trial and thus
there is no transition distribution to include in the belief update equation. However, the POMDP framework is
entirely valid for time-varying states.
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2.3 Finding the optimal policy by reward maximization

Within the POMDP framework, the animal’s goal is to find an optimal policy π∗(bt) that maximizes
its expected reward, starting at bt. This is encapsulated in the value function

vπ(bt) = E

[ ∞∑
k=1

r(bt+k, π(bt+k)) | bt, π

]
(5)

where the expectation is taken with respect to all future belief states (bt+1, . . . , bt+k, . . .) given
that the animal is using π to make decisions, and r(b, a) is the reward function over belief states
or, equivalently, the expected reward over hidden states, r(b, a) =

∫
x
R(x, a)b(x)dx. Given the

value function, the optimal policy is simply π∗(b) = arg maxπ v
π(b). In this model, the belief b is

parameterized by s̄t and t, so the animal only needs to keep track of these instead of encoding the
entire posterior distribution bt(x) explicitly.

In our model, the expected reward r(b, a) =
∫
x
R(x, a)b(x)dx is

r(b, a) =


RS , when a = AS

Z−1t [ RPPr(dR) (1− Φ(0 | µt, σt)) +RNPr(dL)Φ(0 | µt, σt) ], when a = AR

Z−1t [ RNPr(dR) (1− Φ(0 | µt, σt)) +RPPr(dL)Φ(0 | µt, σt) ], when a = AL
(6)

where µt and σt are given by (3) and (4), respectively. The above equations can be interpreted as
follows. With probability Pr(dL) · Φ(0 | µt, σt), the hidden state x is less than 0, making AR an
incorrect decision and resulting in a penalty RN if chosen. Similarly, action AR is correct with
probability Pr(dR) · [1− Φ(0 | µt, σt)] and earns a reward of RP . The inverse is true for AL. When
AS is selected, the animal simply receives an observation at a cost of RS .

Computing the value function defined in (5) involves an expectation with respect to future belief.
Therefore, we need to compute the transition probabilities over belief states, T (bt+1|bt, a), for each
action. When the animal chooses to sample, at = AS , the animal’s belief distribution at the next
time step is computed by marginalizing over all possible observations [19]

T (bt+1|bt, AS) =

∫
s

Pr(bt+1|s, bt, AS)Pr(s|bt, AS)ds (7)

where Pr(bt+1 | s, bt, AS) =

{
1 if bt+1(x) = Pr(s|x)bt(x)/Pr(s|bt, AS), ∀x
0 otherwise;

(8)

and Pr(s | bt, AS) =

∫
x

Pr(s|x)Pr(x|b, a)dx = Ex∼b[Pr(s|x)] (9)

When choosing AS , the agent does not affect the world state, so, given the current state bt and
an observation s, the updated belief bt+1 is deterministic and thus Pr(bt+1 | s, bt, AS) is a delta
function, following Bayes’ rule. The probability Pr(s | bt, AS) can be treated as a normalization
factor and is independent of hidden state2. Thus, the transition probability function, T (bt+1 | bt, AS),
is solely a function of the belief bt and is a stationary distribution over the belief space.

When the selected action isAL orAR, the animal stops sampling and makes an eye movement to the
left or the right, respectively. To account for these cases, we include a terminal state, Γ, with zero-
reward (i.e., R(Γ, a) = 0,∀a), and absorbing behavior, T (Γ|Γ, a) = 1,∀a. Moreover, whenever the
animal chooses AL or AR, the POMDP immediately transitions into Γ: T (Γ|b, a ∈ {AL, AR}) =
1, ∀b, indicating the end of a trial.

Given the transition probability between belief states T (bt+1|bt, a) and the reward function, we can
convert our POMDP model into a Markov Decision Process (MDP) over the belief state. Standard
dynamic programming techniques (e.g., value iteration [20]) can then be applied to compute the
value function in (5). A neurally plausible method for learning the optimal policy by trial and error
using temporal difference (TD) learning was suggested in [18]. Here, we derive the optimal policy
from first principles and focus on comparisons between our model’s predictions and behavioral data.

2Explicitly, Pr(s|bt, AS) = Z−1
t N (s|µt, σ2

e +σ2
t )[Pr(dR)+(1−2Pr(dR))Φ(0|

µt
σ2t

+ s
σ2e

1
σ2t

+ 1
σ2e

, ( 1
σ2
t

+ 1
σ2
e

)−1]).
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3 Model Predictions

3.1 Optimal Policy

(a) (b)

Figure 1: Optimal policy for Pr(dR) = 0.5, and 0.9. (a–b) Optimal policy as a joint function of
s̄ and t. Every point in these figures represents a belief state determined by equations (2), (3) and
(4). The color of each point represents the corresponding optimal action. The boundaries ψR(t) and
ψL(t) divide the belief space into three areas ΠS (center), ΠR (upper) and ΠL (lower), respectively.
Model parameters: RN−RPRS

= 1, 000.

Figure 1(a) shows the optimal policy π∗ as a joint function of s̄ and t for the unbiased case where
the prior probability Pr(dR) = Pr(dL) = 0.5. π∗ partitions the belief space into three regions: ΠR,
ΠL, and ΠS , representing the set of belief states preferring actions AR, AL and AS , respectively.
We define the boundary between AR and AS , and the boundary between AL and AS as ψR(t)
and ψL(t), respectively. Early in a trial, the model selects the sampling action AS regardless of
the value of the observed evidence. This is because the variance of the running average s̄ is high
for small t. Later in the trial, the model will choose AR or AL when s̄ is only slightly above
0 because this variance decreases as the model receives more observations. For this reason, the
width of ΠS diminishes over time. This gradual decrease in the threshold for choosing one of
the non-sampling actions AR or AL has been called a “collapsing bound” in the decision making
literature [21, 17, 22]. For this unbiased prior case, the expected reward function is symmetric,
r(bt(x), AR) = r(Pr(x|s̄t, t), AR) = r(Pr(x| −s̄t, t), AL), and thus the decision boundaries are
also symmetric around 0: ψR(t) = −ψL(t).

The optimal policy π∗ is entirely determined by the reward parameters {RP , RN , RS} and the prior
probability (the standard deviation of the emission distribution σe only determines the temporal
resolution of the POMDP). It applies to both Carpenter and Williams’ task and the random dots
task (these two tasks differ only in the interpretation of the hidden state x). The optimal action at
a specific belief state is determined by the relative, not the absolute, value of the expected future
reward. From (6), we have

r(b, AL)− r(b, AR) ∝ RN −RP . (10)
Moreover, if the unit of reward is specified by the sampling penalty, the optimal policy π∗ is entirely
determined by the ratio RN−RP

RS
and the prior.

As the prior probability becomes biased, the optimal policy becomes asymmetric. When the prior
probability, Pr(dR), increases, the decision boundary for the more likely direction (ψR(t)) shifts
towards the center (the dashed line at s̄ = 0 in figure 1), while the decision boundary for the opposite
direction (ψL(t)) shifts away from the center, as illustrated in Figure 1(b) for prior Pr(dR = 0.9).
Early in a trial, ΠS has approximately the same width as in the neutral prior case, but it is shifted
downwards to favor more sampling for dL (s̄ < 0). Later in a trial, even for some belief states
with s̄ < 0, the optimal action is still AR, because the effect of the prior is stronger than that of the
observed data.

3.2 Psychometric function and reaction times in the random dots task

We now construct a decision model from the learned policy for the reaction time version of the
motion discrimination task [14], and compare the model’s predictions to the psychometric and
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(a) Human SK (b) Human LH (c) Monkey Pr(dR) = .8 (d) Monkey Pr(dR) = .7

Figure 2: Comparison of Psychometric (upper panels) and Chronometric (lower panels) func-
tions between the Model and Experiments. The dots with error bars represent experimental data
from human subject SK, and LH, and the combined results from four monkeys. Blue solid curves
are model predictions in the neutral case while green dotted curves are model predictions from the
biased case. The R2 fits are shown in the plots. Model parameters: (a) RN−RPRS

= 1, 000, k = 1.45.
(b) RN−RPRS

= 1, 000, µ = 1.45. (c) Pr(dR) = 0.8, RN−RPRS
= 1, 000, k = 1.4. (d) Pr(dR) = 0.7,

RN−RP
RS

= 1, 000, k = 1.4.

chronometric functions of a monkey performing the same task [13, 14]. Recall that the belief b
is parametrized by s̄t and t, so the animal only needs to know the elapsed time and compute a run-
ning average s̄t of the observations in order to maintain the posterior belief bt(x). Given its current
belief, the animal selects an action from the optimal policy π∗(bt). When bt ∈ ΠS , the animal
chooses the sampling action and gets a new observation st+1. Otherwise the animal terminates
the trial by making an eye movement to the right or to the left, for s̄t > ψR(t) or s̄t < ψL(t),
respectively.

The performance on the task using the optimal policy can be measured in terms of both the accuracy
of direction discrimination (the so-called psychometric function), and the reaction time required to
reach a decision (the chronometric function). The hidden variable x = kdc encapsulates the un-
known direction and coherence, as well as the free parameter k that determines the scale of stimulus
st. Without loss of generality, we fix d = 1 (rightward direction), and set the hidden direction dR as
the biased direction. Given an optimal policy, we compute both the psychometric and chronomet-
ric function by simulating a large number of trials (10000 trials per data point) and collecting the
reaction time and chosen direction from each trial.

The upper panels of figure 2(a) and 2(b) (blue curves) show the performance accuracy as a function
of coherence for both the model (blue solid curve) and the human subjects (blue dots) for neutral
prior Pr(dR) = 0.5. We fit our simulation results to the experimental data by adjusting the only
two free parameters in our model: RN−RP

RS
and k. The lower panels of figure 2(a) and 2(b) (blue

solid curves) shows the predicted mean reaction time for correct choices as a function of coherence
c for our model (blue solid curve, with same model parameters) and the data (blue dots). Note
that our model’s predicted reaction times represent the expected number of POMDP time steps
before making a rightward eye movement AR, which we can directly compare to the monkey’s
experimental data in units of real time. A linear regression is used to determine the duration τ of
a single time step and the onset of decision time tnd. This offset, tnd, can be naturally interpreted
as the non-decision residual time. We applied the experimental mean reaction time reported in [13]
with motion coherence c = 0.032, 0.064, 0.128, 0.256 and 0.512 to compute the slope and offset, τ
and tnd. Linear regression gives the unit duration per POMDP step as τ = 5.74ms , and the offset
tnd = 314.6ms, for human SK. For human LH, similar results are obtained with τ = 5.20ms and
tnd = 250.0ms. Our predicted offsets compare well with the 300ms non-decision time on average
reported in the literature [23, 24].
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When the human subject is verbally told that the prior probability is Pr(dR) = Pr(d = 1) = 0.8,
the experimental data is inconsistent with the predictions of the classic drift diffusion model [14]
unless an additional assumption of a dynamic bias signal is introduced. In the POMDP model we
propose, we predict both the accuracy and reaction times in the biased setting (green curves in
figure 2) with the parameters learned in the neutral case, and achieve a good fit (with the coefficients
of determination shown in fig. 2) to the experimental data reported by Hanks et al. [13]. Our model
predictions for the biased cases are a direct result of the reward maximization component of our
framework and require no additional parameter fitting.

Combined behavioral data from four monkeys is shown by the dotted curves in figure 2(c). We
fit our model parameters to the psychometric function in the neutral case, with τ = 8.20ms and
tnd = 312.50ms, and predict both the psychometric function and the reaction times in the biased
case. However, our results do not match the monkey data as well as the human data when Pr(dR) =
0.8. This may be due to the fact that the monkeys cannot receive verbal instructions from the
experimenters and must learn an estimate of the prior during training. As a result, the monkeys’
estimate of the prior probability might be inaccurate. To test this hypothesis, we simulated our
model with Pr(dR) = 0.7 (see figure 2(d)) and these results fit the experimental data much more
accurately (even though the actual probability was 0.8).

3.3 Reaction times in the Carpenter and Williams’ task

(a) (b)

Figure 3: Model predictions of saccadic eye movement in Carpenter & Williams’ experi-
ments [10]. (a) Saccadic latency distributions from model simulations plotted in the form of probit-
scale cumulative mass function, as a function of reciprocal latency. For different values of Pr(dR),
the simulated data are well fit by straight lines, indicating that the reciprocal of latency follows a
normal distribution. The solid lines are linear functions fit to the data with the constraint that all
lines must pass through the same intercept for infinite time (see [10]). (b) Median latency plotted as
a function of log prior probability. Black dots are from experimental data and blue dots are model
predictions. The two (overlapping) straight lines are the linear least squares fits to the experimental
data and model data. These lines do not differ noticeably in either slope or offset. Model parameters:
RN−RP
RS

= 1, 000, k = 0.3, σe = 0.46.

In Carpenter and Williams’ task, the animal needs to decide on which side d ∈ {−1, 1} (denoting
left or right side) a target light appeared at a fixed distance from a central fixation light. After the
sudden appearance of the target light, a constant stimulus st = s is observed by the animal, where s
can be regarded as the perceived location of the target. Due to noise and uncertainty in the nervous
system, we assume that s varies from trial to trial, centered at the location of the target light and
with standard deviation σe (i.e., s ∼ N (s | k, σ2

e)), where k is the distance between the target and
the fixation light. Inference over the direction d thus involves joint inference over (d, k) where the
emission probability follows Pr(s|d, k). Then the joint state (k, d) can be one-on-one-mapped to
kd = x, where x represents the actual location of the target light. Under the POMDP framework,
Carpenter and Williams’ task and the random dots task differ in the interpretation of hidden state x
and stimulus s, but they follow the same optimal policy given the same reward parameters.

Without loss of generality, we set the hidden variable x > 0 and say that the animal makes a
correct choice at a hitting time tH when the animal’s belief state reaches the right boundary. The
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saccadic latency can be computed by inverting the boundary function ψ−1R (s) = tH . Since, for
small t, ψR(t) behaves like a simple reciprocal function of t, the reciprocal of the reaction time is
approximately proportional to a normal distribution with 1

tH
∼ N (1/tH | k, σ2

e). In figure 3(a),
we plot the distribution of reciprocal reaction time with different values of Pr(dR) on a probit scale
(similar to [10]). Note that we label the y-axis using the CDF of the corresponding probit value
and the x-axis in figure 3(a) has been reversed. If the reciprocal of reaction time (with the same
prior Pr(dR)) follows a normal distribution, each point on the graph will fall on a straight line with
y-intercept k

√
2

σe
that is independent of Pr(dR). We fit straight lines to the points on the graph,

with the constraint that all lines should pass through the same intercept for infinite time (see [10]).
We obtain an intercept of 6.19, consistent with the intercept 6.20 obtained from experimental data
in [10]. Figure 3(b) demonstrates that the median of our model’s reaction times is a linear function
of the log of the prior probability. Increasing the prior probability lowers the decision boundary
ψR(t), effectively decreasing the latency. The slope and intercept of the best fit line are consistent
with experimental data (see fig. 3(b)).

4 Summary and Conclusion

Our results suggest that decision making in the primate brain may be governed by the dual principles
of Bayesian inference and reward maximization as implemented within the framework of partially
observable Markov decision processes (POMDPs). The model provides a unified explanation for
experimental data previously explained by two competing models, namely, the additive offset model
and the dynamic weighting model for incorporating prior knowledge. In particular, the model pre-
dicts psychometric and chronometric data for the random dots motion discrimination task [13] as
well as Carpenter and Williams’ saccadic eye movement task [10].

Previous models of decision making, such as the LATER model [10] and the drift diffusion
model [25, 15], have provided descriptive accounts of reaction time and accuracy data but often
require assumptions such as a collapsing bound, urgency signal, or dynamic weighting to fully ex-
plain the data [26, 21, 22, 13]. Our model provides a normative account of the data, illustrating how
the subject’s choices can be interpreted as being optimal under the framework of POMDPs.

Our model relies on the principle of reward maximization to explain how an animal’s decisions
are influenced by changes in prior probability. The same principle also allows us to predict how an
animal’s choice is influenced by changes in the reward function. Specifically, the model predicts that
the optimal policy π∗ is determined by the ratio RN−RP

RS
and the prior probability Pr(dR). Thus, a

testable prediction of the model is that the speed-accuracy trade-off in tasks such as the random dots
task is governed by the ratio RN−RP

RS
: smaller penalties for sampling (RS) will increase accuracy

and reaction time, as will larger rewards for correct choices (RP ) or greater penalties for errors
(RN ). Since the reward parameters in our model represent internal reward, our model also provides
a bridge to study the relationship between physical reward and subjective reward.

In our model of the random dots discrimination task, belief is expressed in terms of a piecewise nor-
mal distribution with the domain of the hidden variable x ∈ (−∞,∞). A piecewise beta distribution
with domain x ∈ [−1, 1] fits the experimental data equally well. However, the beta distribution’s
conjugate prior is the multinomial, which can limit the application of this model. For example, the
observations in the Carpenter and Williams’ model cannot easily be described by a discrete value.
The belief in our model can be expressed by any distribution, even a non-parametric one, as long
as the observation model provides a faithful representation of the stimuli and captures the essential
relationship between the stimuli and the hidden world state.

The POMDP model provides a unifying framework for a variety of perceptual decision making
tasks. Our state variable x and action variable a work with arbitrary state and action spaces, ranging
from multiple alternative choices to high dimensional real value choices. The state variables can
also be dynamic, with xt following a Markov chain. Currently, we have assumed that the stimuli
are independent from one time step to the next, but most real world stimuli are temporally corre-
lated. Our model is suitable for decision tasks with time-varying state and observations that are time
dependent within a trial (as long as they are conditional independent given the time-varying hidden
state sequence). We thus expect our model to be applicable to significantly more complicated tasks
than the ones modeled here.
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