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Abstract

Difficult nonconvex optimization problems contain a combinatorial number of lo-
cal optima, making them extremely challenging for modern solvers. We present
a novel nonconvex optimization algorithm that explicitly finds and exploits local
structure in the objective function in order to decompose it into subproblems, ex-
ponentially reducing the size of the search space. Our algorithm’s use of decompo-
sition, branch & bound, and caching solidifies the connection between nonconvex
optimization and combinatorial optimization. We discuss preliminary experimen-
tal results on protein folding, Gaussian mixture models, and bundle adjustment.

1 Introduction

Difficulty in nonconvex optimization arises from a combinatorial explosion of modes in the ob-
jective function. Current methods resort to using convex optimizers in conjunction with random-
ness [1, 2, 3] or local linearization [4, 5], leaving them unable to explore the exponential number of
local optima present in these problems. While these techniques yield impressive results in certain
domains, their inability to deal with more complicated underlying structure hinders them in many
important problems (e.g., protein folding [6, 7], MAP inference [8]).

Fortunately, techniques from combinatorial optimization provide methods for effectively performing
exponentially more search in the same amount of time – namely, decomposition, branch & bound,
and caching. Building on similarities with combinatorial optimization, our insight is that optimizing
a nonconvex function consisting of a sum of terms, each of which is over a subset of the variables,
can be performed exponentially faster if the objective function decomposes into independent sub-
groups of terms. Our ideas and techniques are based on model counting (#SAT) (see [9]), but are also
related to variable elimination [10], recursive condition [11], and, even more closely, sum-product
networks [12], since we exploit local structure and are not restricted to conditional independencies.

Our contribution is the first nonconvex optimization algorithm that finds and exploits local structure
in the objective function in order to decompose the problem, reducing the size of the search space
by an exponential factor. In the following section, we explain the algorithm, first at a high level and
then in more detail, providing both pseudocode and a theoretical guarantee of optimality. Section 3
presents a brief description of experiments on protein folding, Gaussian mixture models, and bundle
adjustment [13]. Finally, Section 4 concludes with a summary and discussion of future work.

2 A combinatorial algorithm for nonconvex optimization

Decomposition in the objective function occurs for reasons both structural and approximate. The
simplest form of decomposition exists when separate terms contain non-overlapping subsets of vari-
ables, e.g., minx,y t0(x) + t1(y) = minx t0(x) +miny t1(y). These functions are identical, but the
minimization on the right is significantly cheaper than that on the left. Conditional independence
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(as exploited in variable elimination and recursive conditioning) allows more general decomposi-
tion. For example, we can decompose minx,y,z t0(x, z) + t1(y, z) by conditioning on z, to give
minz {minx t0(x, z) + miny t1(y, z)}. Variable elimination and recursive conditioning are inher-
ently discrete techniques, but the same principle applies in continuous domains as well. Indepen-
dence due to local structure, which is strictly more general than conditional independence, can occur
if, for example, we are optimizing minx,y,z t0(x) + t1(x, y, z) + t2(y) and, by setting z = c, term
t1 becomes approximately constant, in the sense that its variation is dominated by that of t0 and t1,
resulting in k +minx t0(x) + miny t2(y). Additional local decomposition is possible if terms have
specific internal structure that can be exploited (e.g., by setting part of the term to a constant). We
refer to this process of setting terms or subterms to constants as simplification.

Our algorithm begins by heuristically choosing a variable to condition on. It then explores this
variable’s domain, assigning a finite set of values from the domain, chosen to guarantee that we do
not incur more than ε error (see Section 2.2). For each assignment, our algorithm simplifies the
objective function, decomposes it into independent sub-functions consisting of independent sets of
terms and variables, and then recurses on these sub-functions, summing the results of these recursive
calls to get the evaluation of the function. Pseudocode of our algorithm is shown in Algorithm 1.
The recursive structure allows us to choose variables and their values based on local information,
maximizing simplification and decomposition. In the implementation of our algorithm, we employ
branch & bound and caching to provide additional exponential computational gains. These are
omitted from Algorithm 1 for clarity, but are discussed briefly in Section 2.3.

For variable selection (line 1 of Algorithm 1), we use a MOMS-type (maximum occurrences of
minimum size [14]) structural heuristic that chooses the variable that shares terms with the largest
number of unique variables. This prioritizes variables with more dependencies and aids decomposi-
tion by assigning those first. Note that this heuristic makes local decisions because the current sets
of variables and terms are determined by the earlier assignments, simplifications, and decomposi-
tions that have occurred, which are determined locally. For choosing values of a variable (line 3 of
Algorithm 1), we begin with the value that resulted in the minimum in a neighboring region and
then iteratively step away from that value, preferring to move downhill since that will take us to the
minimum in fewer steps. When choosing the step size, we assume Lipschitz continuity and compute
the largest step in the variable’s domain that guarantees that we will never incur an error larger than
a specified amount, relative to the global optimum (see Section 2.2 for more details).

Algorithm 1: Approximate minimization of a nonconvex function by recursive decomposition into
locally independent subspaces.
Function Minimize(f, ε):

Input: The function f(X) =
∑
tj(Xj) over the variables, X = {xi}, contained in the terms

T = {tj}, each of which is over a subset of the variables Xj .
The allowed approximation error, ε.

Output: Value within ε of the global minimum of f(X) in the hyperrectangle defined by the
domains of X , {dom(xi)}.

1 x← chooseVar(X) // pick x to maximize decomposition
2 while x’s domain could contain a new minimum
3 x = (v ← chooseVal(dom(x), ε) // pick value v and assign to x
4 simplify(Tx, ε) // simplify terms containing x
5 {fk(Xk)} ← decompose(f, T,X) // split into indep. functions
6 fx=v ←

∑
k Minimize

(
fk, ε

)
// recurse over simplified functions

7 fmin ← min {fmin, fx=v}
return fmin

2.1 An example

A domain to which our algorithm seems particularly well-suited is protein folding [6, 7]. Protein
folding is the process by which a protein, consisting of a long chain of amino acids, assumes its
functional shape. The computational problem is to predict this final conformation from the known
sequence of amino acids. This requires minimizing an energy function consisting mainly of a sum
of pairwise distance-based terms representing chemical bonds, hydrophobic interactions, electro-
static forces, etc., where the variables are the relative angles between the atoms. A good analogy for
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protein folding is solving a jigsaw puzzle, since atoms cannot pass through each other and amino
acids bond to one another based on their 3-D shape and specific chemical properties, much like
puzzle pieces only fit in one specific location. While a jigsaw puzzle is inherently continuous,
solving it involves independently grouping similar pieces and building a solution by fitting specific
pieces together, instead of trying all pieces against all other pieces. Similarly, our algorithm reinter-
prets continuous optimization as combinatorial optimization by breaking the objective function into
groups, solving those groups independently, and constructing the overall solution from those pieces.

In addition, protein folding is near impossible for optimization techniques that only exploit condi-
tional independencies, since almost every pairwise interaction is meaningful at some point in the
space and thus there are no conditional independencies. However, at any point in the conforma-
tion space, the majority of these energy terms are approximately zero, since they are distance-based
terms with large negative exponents. Thus, by taking advantage of local structure, we can achieve
decompositions that algorithms like variable elimination cannot. Protein folding provides a good
example of why we selected our particular heuristic for choosing variables. In protein folding, there
typically exists a backbone of atoms or amino acids that, once set, causes the remainder of the
variables to decompose into independent subsets. Many other problems seem to exhibit this same
backbone structure (e.g., SAT [15]) and, thus, we use a MOMS-type heuristic to prioritize backbone
variables, which tend to be the most highly-connected variables.

2.2 Continuous aspects

Considerations of continuity appear when selecting the values of variables. The parameter ε, the
absolute error allowed in the returned minimum relative to the (unknown) global minimum, con-
trols the tradeoff between accuracy of the solution and the complexity of the computation – as ε is
increased, the error increases, but the number of values the algorithm needs to consider decreases.
The following theoretical results provide bounds on the error in the minimum returned by our algo-
rithm. Briefly, our assumption of Lipschitz continuity allows us to explore each variable in a finite
number of steps, while only incurring a fixed amount of error, εv , for each variable. In addition, our
algorithm computes the bounds of each term and simplifies those with bounds of width less than εs.
With these two mechanisms, we can bound the error in the minimum returned by our algorithm to
ε = nεv +mεs, for an objective function with n variables and m terms.

For any f , let f∗(X) denote the global minimum.
Lemma 1. For a chosen εv > 0, if f(x) ∈ R is Lipschitz continuous and any evaluation f(x = a)
has error at most εe, then our algorithm computes fmin(x), with

∣∣fmin(x)− f∗(x)∣∣ ≤ (εv + εe).

Lemma 2. If f(x0, . . . , xn) =
∑m
j=1 tj(Xj) and tk(Xk) ∈ [L,U ] then the maximum error incurred

in f(x0, . . . , xn) from setting tk(Xk) =
U+L
2 is U−L

2 .

Our algorithm computes [Lk, Uk] for all tk, simplifying terms that incur error less than εs. Let ρ be
an assignment to a subset of variables such that fρ(x0)=f(x0, x1=ρ1, ..., xn=ρn). Let mi be the
number of terms containing only xi (ignoring variables set to a constant) at a specific recursion level.
Theorem 1. Leaf nodes of the recursion return fminρc (xc), such that∣∣fminρc (xc)− f∗ρc(xc)

∣∣ ≤ εv +mcεs. Similarly, the parents of leaf nodes return fminρp (xp, {xc}),
such that

∣∣∣fminρp (xp, {xc})− f∗ρp(xp, {xc})
∣∣∣ ≤ εv +mpεs +

∑
{xc} εv +mcεs.

Theorem 2. When minimizing f(x0, . . . , xn) =
∑m
j=1 tj(Xj), the output of our algorithm,

fmin(x0, . . . , xn), has error ε = nεv +mεs, such that
∣∣fmin(x0, . . . , xn)− f∗(x0, . . . , xn)∣∣ ≤ ε.

We omit all proofs here due to lack of space.

2.3 Additional details

Decomposition produces significant improvements in performance but does not address scenarios
where entire regions of the space cannot contain a better minimum. We employ branch & bound [16]
to stop exploring a region of space, potentially avoiding an exponential number of computations, if
the lower bound for that region exceeds the upper bound on the minimum of the objective function.
However, decomposition can still result in an exponential number of repeated computations. To
prevent this, we cache the computed fmin of each sub-function and check the cache at each level
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of recursion before performing the computation. A major distinction between our cache and that of
#SAT [17] or recursive conditioning, is that our cache must be continuous and approximate. Finally,
despite these considerable gains, most problems remain exponential, making joint optimization over
large numbers of variables impossible. Instead, we trade locality for computation time by iteratively
performing a series of optimizations over subdomains of the variables (not shown in Algorithm 1).
This process resembles gradient descent, except that at each step our algorithm computes the opti-
mum over a small hyperrectangle, instead of taking a step in the gradient direction. As such, we are
able to jump over nearby local optima that can trap gradient descent.

3 Experiments

We applied our algorithm to a restricted protein folding [6, 7] problem: sidechain optimization.
Amino acids consist of a backbone and a sidechain. In this problem, the backbone atoms are fixed
and only the sidechain atoms can move. The state of the art [18, 19] is for a discretized version of the
problem, and, simply by using our algorithm as a combinatorial optimizer, we achieve comparable
results on many of the proteins in their dataset. However, our algorithm’s strength lies in its ability to
solve continuous optimization problems, which the existing solvers are unable to do, so we anticipate
even stronger results on continuous versions. The proteins that we find difficult are those with many
dependencies that do not exhibit much decomposition. We are working on exploiting more structure
in this domain both to handle these challenging proteins and to solve the full protein folding problem.

We’ve also experimented with fitting Gaussian mixture models (GMMs) with diagonal covariance
matrices to data. Here, dependencies between components form the underlying structure, where de-
pendencies exists if a data point is similarly likely to be from multiple components. Our algorithm
performs well here when independencies between the components exist and decomposition occurs.
These independencies occur even if components are not well-separated in space; instead, compo-
nents must be separated by each other (e.g., a line of components). Exploiting within-term simplifi-
cations significantly increases the amount of decomposition. The remaining challenge is that com-
ponents grow their covariances to move. Thus, if the initialization is poor then most components be-
come large, resulting in many dependencies and eliminating decomposition. We are investigating in-
corporating gradient descent and sampling methods to assist in these highly inter-dependent regions.

Finally, bundle adjustment [13] is a promising domain for our algorithm. The goal is to minimize
the error between a dataset of 2-D images and a projection of learned 3-D points representing a
scene’s geometry onto learned camera models. This problem is highly-structured: cameras are
explicitly dependent on the points and only implicitly on other cameras, creating a bipartite depen-
dency graph that is simpler to decompose than a general graph. Bundle adjustment has the same
the jigsaw-puzzle-like nature as protein folding: the cameras and points must fit together, but there
are thousands to millions of squared-error terms that create strong constraints on the variables. This
implies that exploring the underlying modes approximately is more important than finding the exact
minimum of one local optimum, making this problem well-suited to our algorithm. As in the pre-
vious experiments, our algorithm performs well when decomposition is possible. We are currently
improving our implementation to handle the large numbers of variables present in this task.

4 Discussion

Nonconvex optimization problems are prevalent in both the scientific and the machine learning com-
munities. While convexity-based solvers have made remarkable progress on many of these prob-
lems, they are simply unable to cope with the exponential number of local optima present in many
of these domains. To this end, we have introduced a novel, fixed-error, nonconvex optimization al-
gorithm that uses techniques from combinatorial optimization to exploit local structure and decom-
position in the objective function, exponentially reducing the size of the search space and bridging
the divide between nonconvex optimization and combinatorial optimization. Our algorithm’s com-
binatorial roots allow it to handle both discrete and continuous variables and it can trivially support
constrained optimization by rewriting the constraints as terms in the objective function. We are
currently working on finishing the experiments outlined above and extending our algorithm to in-
corporate a combination of gradient descent and random sampling. For future work, our algorithm’s
use of the min-sum semiring to achieve decomposition should make it straightforward to extend our
algorithm to the sum-product semiring, creating an algorithm for continuous integration.
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