
Unifying Sum-Product Networks and Submodular Fields

Abram L. Friesen 1 Pedro Domingos 1

Abstract
Sum-product networks (SPNs) are a relatively
new class of deep probabilistic models that are
expressive but also tractable, due in part to their
ability to exploit local structure in the form of
context-specific independence and determinism.
However, there remain many types of problems
that are highly structured, but for which SPNs
are intractable. In particular, the MAP solution
of a Markov random field (MRF) with submod-
ular energy can be computed in low-order poly-
nomial time, but an SPN representing the same
distribution would be intractable. In this work,
we present submodular sum-product networks
(SSPNs), a generalization of SPNs in which sum-
node weights can be defined by a submodular
energy function. SSPNs combine the expres-
sivity and depth of SPNs with the ability to ef-
ficiently compute the MAP state of a combi-
natorial number of labelings afforded by sub-
modularity, greatly increasing the expressivity
of the SPN model class. We develop a move-
making algorithm for computing the (approxi-
mate) MAP state of an SSPN and analytically
show that it is both efficient and convergent.
Empirically, we show exponential improvements
in inference time compared to traditional infer-
ence algorithms such as α-expansion and belief
propagation, while returning comparable min-
ima. Finally, we present promising empirical re-
sults when using SSPNs for scene understanding.

1. Introduction
In recent years, there has been a growing interest in proba-
bilistic models that are expressive but still permit tractable
inference. An important subset of this space can be charac-
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terized as sum-product networks (SPNs) (Poon & Domin-
gos, 2011; Gens & Domingos, 2012), an expressive class
of deep probabilistic models that consist of many layers
of hidden variables and can have unbounded treewidth.
Despite this depth and corresponding expressivity, exact
marginal and MPE (with respect to both the hidden and ob-
served variables) inference in an SPN is guaranteed to take
time linear in its size, whereas more traditional graphical
models, such as Markov random fields (MRFs), have infer-
ence complexity that is both best- and worst-case exponen-
tial in their treewidth (Chandrasekaran et al., 2008). Much
of this exponential improvement in inference complexity
is due to the ability of SPNs to exploit local structure in
the form of context-specific independence (Boutilier et al.,
1996) and determinism in the underlying distribution.

However, submodularity, another form of local structure
that permits exponential reductions in inference complex-
ity and is commonly exploited to build tractable mod-
els in fields from computer vision (Greig et al., 1989;
Boykov et al., 2001; Kolmogorov & Rother, 2007; Ko-
modakis et al., 2007) to social network modeling (Kempe
et al., 2003; Mossel & Roch, 2007), is not a property that
SPNs are able to take advantage of, despite its clear bene-
fits. For example, scene understanding (or semantic seg-
mentation) is commonly formulated as a pairwise MRF
with a node for each pixel in the image and a label for
each semantic class. In the general case, finding the op-
timal segmentation of an image is intractable. However,
if the MRF is submodular (alternatively, regular or attrac-
tive) (Kolmogorov & Zabih, 2004), meaning that each pixel
prefers to have the same label as its neighbors, then the
exact MAP solution of a binary MRF can be recovered in
low-order polynomial time in the number of pixels with the
use of a graph-cut algorithm1 (Greig et al., 1989; Boykov
& Kolmogorov, 2004). For multi-label problems, a con-
stant factor approximation can be recovered with the same
time complexity using a move-making algorithm, such as
α-expansion (Boykov et al., 2001), which solves a series of
binary graph cut problems to find the multi-label solution.
However, pairwise MRFs are insufficiently expressive for
complex tasks such as scene understanding, as they require
a combinatorial number of labels to model higher-level re-

1Formally, a min-cut/max-flow algorithm (Ahuja et al., 1993)
on a graph constructed from the MRF.
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lationships, such as constituency (part-subpart) or subcate-
gorization (superclass-subclass) between arbitrary regions
of the image, which is intractable. Conversely, an SPN can
efficiently model these types of high-level relationships but
cannot efficiently represent the possible segmentations of
an image.

In this work, we present submodular sum-product networks
(SSPNs), a novel probabilistic model that generalizes both
SPNs and submodular MRFs, thereby combining the ex-
pressive power of SPNs with the tractable inference prop-
erties of submodular random fields. An SSPN is a sum-
product network in which the weight of each child of a
sum node is given by the energy of a particular state of
a submodular energy function. In the case of scene un-
derstanding, an SSPN over an image can be interpreted
as an instantiation of all possible parse trees of that im-
age with respect to a given image grammar, where the
probability distribution over the segmentations of a pro-
duction on a particular region is defined by a submodu-
lar random field over the pixels in that region. Impor-
tantly, SSPNs permit objects and regions to take arbitrary
shapes, instead of restricting the set of possible shapes as
has previously been necessary for tractable inference. By
exploiting submodularity, we develop a highly-efficient ap-
proximate inference algorithm, INFERSSPN, for comput-
ing the MAP state of the SSPN (equivalently, the optimal
parse of the image). INFERSSPN is an iterative move-
making-style algorithm that provably converges to a lo-
cal minimum of the energy, reduces to α-expansion in the
case of a trivial grammar, and has worst-case complexity
O(|G|c(n)n) for each iteration (but in practice behaves as
O(|G|c(n))), where n is the number of pixels, c(n) is the
complexity of a single graph cut (linear or quadratic in n)
and |G| is the size of the grammar. As with other move-
making algorithms, INFERSSPN converges to a local min-
imum with respect to an exponentially-large set of neigh-
bors, overcoming many of the main issues of local min-
ima (Boykov et al., 2001). Empirically, we compare IN-
FERSSPN to belief propagation (BP) and to α-expansion.
We show that INFERSSPN parses images in exponentially
less time than both of these while returning energies com-
parable to α-expansion, which is itself guaranteed to return
energies within a constant factor of the true optimum. We
also show promising results on scene understanding using
oracle-induced grammars.

The literature on using higher-level relationships for scene
understanding is vast. We briefly discuss the most rele-
vant work on hierarchical random fields over multiple la-
bels, image grammars for segmentation, and neural parsing
methods. Hierarchical random field models (e.g., Russell
et al. (2010); Lempitsky et al. (2011)) define MRFs with
multiple layers of hidden variables and then perform infer-
ence, often using graph cuts to efficiently extract the MAP

Figure 1. A partial (submodular) sum-product network for pars-
ing an image with respect to the grammar shown. There is a sum
node for each nonterminal symbol with a child sum node for each
production of that symbol. Each sum node for a production has a
child product node for each possible segmentation of its region.

solution. However, these models are typically restricted to
just a few layers and to pre-computed segmentations of the
image, and thus do not allow arbitrary region shapes. In
addition, they require a combinatorial number of labels to
encode complex grammar structures. Previous grammar-
based methods for scene understanding, such as Zhu &
Mumford (2006) and Zhao & Zhu (2011), have used MRFs
with AND-OR graphs (Dechter & Mateescu, 2007), but
needed to restrict their grammars to a very limited set of
productions and region shapes in order to perform infer-
ence in reasonable time, and are thus much less expressive
than SSPNs. Finally, neural parsing methods such as those
in Socher et al. (2011) and Sharma et al. (2014) use re-
cursive neural network architectures over superpixel-based
features to segment an image; thus, these methods also do
not allow arbitrary region shapes. Further, Socher et al.
(2011) and Sharma et al. (2014) respectively create parse
trees greedily and randomly, whereas INFERSSPN finds
the approximately optimal parse tree.

2. Submodular sum-product networks
A sum-product network (SPN) (Poon & Domingos, 2011;
Gens & Domingos, 2013) is a deep, probabilistic model
typically represented as a directed acyclic graph (DAG) of
sum nodes, product nodes, and leaf functions, with weights
on the child-edges of each sum node. Product nodes in
an SPN are decomposable, meaning that the children of
a product node must have disjoint scopes, where a node’s
scope is the set of variables its descendant leaf functions
are over. Decomposability ensures that inference in SPNs
can be performed exactly in time linear in the size of the
network, but is a weak restriction in that SPNs can still effi-
ciently represent distributions with high treewidth (Friesen
& Domingos, 2016). Without loss of generality, we assume
that sums and products are arranged in alternating layers.
See the cited papers for more details on SPNs.
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For the purposes of this paper, we define an SPN using
a very expressive grammar containing a symbol for each
sum node and a production for each product node. Each
production produces the symbols corresponding to its chil-
dren and the production probabilities are defined by the
edge weights. Due to decomposability, the scopes of the
symbols produced by a production partition the scope of
the parent symbol. SPNs strictly subsume standard gram-
mar formulations, such as probabilistic context-free gram-
mars (PCFGs) (Jurafsky & Martin, 2000), since they allow
partitions to have non-uniform probabilities and to be non-
contiguous. Despite this flexibility, however, SPNs cannot
fully exploit it, because the number of possible partitions
of n variables is exponential in n, and an SPN would need
exponential size to represent these. For example, Poon &
Domingos (2011) define an SPN over images but can only
retain tractability by restricting symbols to have rectangu-
lar regions (scopes). However, objects in images are rarely
rectangular, indicating a truth about many data types: the
partitioning (decomposability) structure is in general nei-
ther known a priori nor highly regular.

In this work, we present submodular sum-product networks
(SSPNs), a generalization of SPNs that uses submodular
Markov random fields (MRFs) to define the probability of
each partition of a sum node’s scope and efficiently encode
this exponentially-large set. Extending the grammar for-
mulation, a symbol in an SSPN maps to an exponentially-
large set of sum nodes in some implicit underlying SPN,
where each such sum node has a different scope. Produc-
tions similarly encode all possible partitions of each sym-
bol’s scope and similarly map to (implicit) exponentially-
large sets of product nodes. The supplement 2 contains
more details on this mapping. With respect to images, an
SSPN encodes a grammar in which each symbol can have
arbitrary region shape at inference time, providing a much
more flexible representation of the components of an image
and their relationships. It is not necessary to define SSPNs
with respect to a grammar or an image but we do so here
with respect to scene understanding and a flexible grammar
(that subsumes SPNs) to simplify the exposition.

2.1. Model definition

As with SPNs, an SSPN defines a generative model, the
structure of which can be defined by a non-recursive
stochastic grammar G = (N,Σ, R, S), where N is a fi-
nite set of nonterminal symbols; Σ is a finite set of terminal
symbols; R is a finite set of productions R = {v : X →
Y1 . . . Yk} with head symbol X ∈ N and constituent sym-
bols Yi ∈ N ∪ Σ for i = 1 . . . k and k > 0; and S ∈ N
is the start symbol, which does not appear on the right-

2http://homes.cs.washington.edu/˜pedrod/
papers/padl17sp.pdf

hand side of any production. For scene understanding, an
SSPN defines a generative model of an image. A parse
(tree) t ∈ TG of an image with respect to the SSPN defined
by grammar G specifies a hierarchy of pairs of productions
and their regions (v,R), where each region specifies a sub-
set of the pixels, can have arbitrary shape, and is a subset of
the regions of its ancestors. An example of an SSPN for a
farm scene is shown in Figure 1. Given the starting symbol
S and the region containing the entire image, the genera-
tive process is to choose a production of that symbol and
then partition (segment) the region into disjoint subregions
– one for each constituent of the production. This process
recurses on each subregion-constituent pair, and terminates
when the constituent is a terminal symbol, at which point
the pixels for that region are generated. Productions are
sampled from each symbol’s mixture distribution over its
productions and segmentations of a given region are sam-
pled from a (submodular) MRF over that region. Specif-
ically, each production has a corresponding MRF defined
over the entire image. The probability of a segmentation
of any subregion is given by the sub-MRF containing only
those pixels and edges in that subregion.

We denote the labeling corresponding to the segmentation
of pixels in a region R for production v : X → Y1 . . . Yk
as yv ∈ Y |R|v , where Yv = {Y1, . . . , Yk}. The region of a
constituent Yi is the set of pixels in R with that label, i.e.,
RYi = {p ∈ R : yvp = Yi}. The probability of image I is
pw(I) =

∑
t∈TG pw(t, I), where the joint probability is

pw(t, I) =
1

Z

∏
(v,R)∈t̃

pw(v|head(v)) · p̃w(yv, I|v,R)

∝ exp
{
−
∑

(v,R)∈t

wv + Ev
w(yv, I,R)

}
, (1)

which we will also write as pw(t, I) ∝ exp(−Ew(t, I)),
and where p̃ are unnormalized probabilities, w are the
model parameters, wv is the production cost associated
with the mixture model of its head symbol, E is the energy
function, and Z =

∑
t∈TG exp(−Ew(t, I)) is the partition

function. To simplify notation, we omit v, I, and R when
clear from context and sum over just v.

The energy of a segmentation of a production v on re-
gion R is given by a pairwise MRF as E(yv,R) =∑

p∈R θ
v
p(yvp ;w)+

∑
(p,q)∈E θ

v
pq(yvp , y

v
q ;w),where θvp and

θvpq are the unary and pairwise costs, and E are the edges
in R. These MRFs can be parameterized arbitrarily, but
in order to permit efficient inference, we require that
θvpq satisfies the submodularity condition θvpq(Y1, Y1) +
θvpq(Y2, Y2) ≤ θvpq(Y1, Y2) + θvpq(Y2, Y1) for all produc-
tions v : X → Y1Y2, once the grammar has been converted
to a grammar in which each production has only two con-
stituents, which is always possible and in the worst case in-
creases the grammar size quadratically (Jurafsky & Martin,

http://homes.cs.washington.edu/~pedrod/papers/padl17sp.pdf
http://homes.cs.washington.edu/~pedrod/papers/padl17sp.pdf
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Figure 2. The two main components of INFERSSPN: (a) Parsing a region R as X → Y Z by fusing two parses of R as Y → AB and
as Z → CD, and (b) Improving the parse of R as X → Y Z by (re)parsing each of its subregions, taking the union of the new Y and
Z parses of R, and then fusing these new parses.

2000; Chomsky, 1959). We also require for every produc-
tion v ∈ R, and for every production c that is a descen-
dant of v in the grammar, that θvpq(yvp , y

v
q ) ≥ θcpq(ycp, y

c
q)

for all possible labelings (yvp , y
v
q , y

c
p, y

c
q), where yvp , y

v
q ∈

Yv and ycp, y
c
q ∈ Yc, to ensure that segmentations of higher-

level productions are submodular relative to their descen-
dants. This also encodes the reasonable assumption that
higher-level abstractions are separated by stronger, shorter
boundaries (relative to their size), while lower-level objects
are more likely to be composed of smaller, more intricately-
shaped regions.

3. Inference
While scene understanding is often thought of as simply
labeling each pixel of an image with its semantic class,
a true understanding of a scene also requires knowledge
of the relationships between image regions at various lev-
els of abstraction, including concepts such as composition
and subcategorization. Identifying these structures and re-
lationships for a particular image can be achieved by find-
ing the best parse of an image I with respect to a gram-
mar G (or, equivalently, performing MAP inference in the
corresponding SSPN), i.e., t∗ = arg maxt∈TG p(t|I) =
arg mint∈TG

∑
v∈tE(yv,Rv, I). The per-pixel semantic

labels can also be recovered from the parse if they are en-
coded in the grammar.

With a PCFG (Jurafsky & Martin, 2000), the optimal parse
of a sentence can be recovered exactly in time cubic in the
length of the sentence with the CYK algorithm (Hopcroft
& Ullman, 1979), which uses dynamic programming to
efficiently parse a sentence in a bottom-up pass through
the grammar, forming larger, more abstract symbols as it
proceeds. This is possible because each sentence only
has a linear number of possible split points; however,
this approach is intractable for images and other higher-
dimensional data types as there are an exponential num-
ber of possible split points. Instead, we first note that if
we knew the regions in the optimal parse tree, parsing an

SSPN would reduce to parsing a small SPN, which can be
accomplished efficiently. Conversely, given the produc-
tion choices in the optimal parse tree, parsing an SSPN
reduces to finding the best labeling of a flat submodular
MRF. However, neither the regions nor the productions are
known. Thus, our inference algorithm, INFERSSPN, es-
timates these in an alternating fashion, first estimating the
regions of each symbol in a downward pass through the
grammar and then iteratively constructing a parse tree for
each production of each symbol for each of its regions in
an upward pass, choosing the best of these to retain and
use when constructing the parses of its ancestors, as in the
CYK algorithm.

However, the number of possible partitions for a production
is still exponential in the region size. The key to efficiently
creating good parses is to exploit submodularity. Recall
that each production has a single associated MRF that de-
fines the segmentation probability for any subregion. IN-
FERSSPN similarly constructs for each production a parse
of all pixels in the image and uses this to represent the parse
of any subregion. Crucially, each parse’s distribution is
also represented by a submodular energy function, which
allows INFERSSPN to take the parses of two symbols Y
and Z and fuse them to create a parse for the production
v : X → Y Z by minimizing a submodular energy func-
tion. The resulting parse of v can itself be fused to create
new parses. We define this procedure below.

3.1. Parse tree construction

Recall that a parse tree t on regionR has energyE(t,R) =∑
u∈tE(yu,Ru), which can be written as E(t,R) =

w(t)+
∑

p∈R θ
t
p +

∑
(p,q)∈E θ

t
pq , where w(t) =

∑
u∈t wu;

[·] is the indicator function; θtp =
∑

u∈t θ
u
p (yup ) · [p ∈ Ru];

and θtpq =
∑

u∈t θ
u
pq(yup , y

u
q ) · [(p, q) ∈ Eu]. This can be

represented as a flat MRF over the pixels in R with an
exponential number of labels (one for each parse path in
the grammar), but inference (segmentation) in this MRF is
hard due to the number of labels and the hard constraints
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Algorithm 1 Compute the (approximate) MAP assignment of the SSPN variables (i.e., choose the productions and regions
/ labelings) for an image and a grammar. This is equivalent to parsing the image.

Input: The image I, a non-recursive grammar G = (N,Σ, R, S,w), and an (optional) input parse t̂.
Output: A parse of the image, t∗, with energy E(t∗, I) ≤ E(t̂, I).

1: function INFERSSPN(I, G, t̂)
2: for each terminal T ∈ Σ do tRT

← the trivial parse with all pixels parsed as T
3: while the energy of any production of the start symbol S has not converged do
4: for each node in t̂ with production u : X → Y Z, regionRX , and subregionsRY ,RZ do
5: appendRY ,RZ to region listsR[Y ],R[Z] and set as the child regions of u forRX

6: for each symbol X ∈ N with no regions inR[X] do addRX = I toR[X]

7: for each symbol X ∈ N , in reverse topological order do // upward pass to parse SSPN
8: for each regionRX in region listR[X] do
9: for each production v : X → Y Z of symbol X do

10: RY ,RZ ← the child regions of v forRX if they exist, else choose heuristically
11: tv, ev ← fuse tRY

and tRZ
as production v over regionRX

12: tv, ev ← fuse tRY
and tRZ

as production v over regionRX = I\RX given tv
13: tRX

, eRX
← the full parse tv ∪ tv with lowest energy ev // choose best parse of RX

14: t̂, ê← tRS
, eRS

// S only ever has a single region, which contains all of the pixels

15: return t̂, ê

imposed by the grammar (e.g., each symbol can only be
produced once). Instead, if we construct each parse tree
one production at a time in a bottom-up fashion then we
only need solve a small number of relatively easy segmen-
tation problems. Note, however, that by doing this we’ve
exchanged a single hard but global labeling problem for a
series of easy but local labeling problems, so the resulting
parse will not in general be globally optimal, although we
will see that it is still quite good.

In particular, given a production v : X → Y1Y2 and parse
trees t1, t2 over the same region R and with head symbols
Y1, Y2, respectively, then for any labeling yv ∈ {Y1, Y2}|R|
of R we can construct a third parse tree tv over region R
with root production v, labeling yv , and subtrees t′1, t

′
2 over

regions R1,R2, respectively, such that Ri = {p ∈ R :
yvp = Yi} and t′i = ti ∩ Ri for each i, where the in-
tersection of a parse tree and a region t ∩ R is the parse
tree resulting from intersecting R with the region at each
node in t. The energy of the resulting parse tree tv is
E(tv,R) = E(v, t1, t2,y,R) = wv + w(t1) + w(t2) +∑

p∈R(θt1p δypY1
+ θt2p δypY2

) +
∑

(p,q)∈E(θ
t1
pqδypY1

δyqY1
+

θt2pqδypY2δyqY2 + θvpq(Y1, Y2)δypY1δyqY2), where δij is the
Kronecker delta. Note that the production costs are con-
stant given v, t1, and t2. The quality of tv depends on the
particular labeling (segmentation) yv used, where the best
parse tree is the one with minimum energy E(tv,R). We
refer to this process of optimally combining the parses of
the constituents of a production as fusion, as it is analo-
gous to the fusion moves of Lempitsky et al. (2010). Fusion
forms the core of INFERSSPN.

Definition 1. For any production v : X → Y1, Y2 and
two parse trees t1, t2 over region R with head symbols
Y1, Y2, the fusion of t1 and t2 as v is the parse tree
tX constructed from the minimum energy labeling yv =
arg min

y∈Y|R|
v

E(v, t1, t2,y).

Figure 2a shows an example of fusing two parse trees to
create a new parse tree. Although fusion requires find-
ing the optimal labeling from an exponentially large set,
E(v, t1, t2,y) is submodular and can be efficiently opti-
mized with a single graph cut. All proofs are presented in
the supplement.

Proposition 1. The energy E(v, t1, t2,y
v) of the fusion of

parse trees t1, t2 over region R with head symbols Y1, Y2
for a production v : X → Y1Y2 is submodular.

By exploiting submodularity, each fusion move finds the
(locally) optimal parse of a production from a combinato-
rial number of possible parses; i.e., all parses that can be
constructed from choosing, for each pixel in the region, the
label specified in one of the sub-trees. Once a parse tree
has been constructed, INFERSSPN improves that parse
tree on subsequent iterations, as shown in Figure 2b. In
particular, for a parse tree t with a subtree ti, then any
improvement to the energy of ti will improve the energy of
t. We show this more formally in the supplement. Finally,
we define the union t = t1 ∪ t2 of two parse trees that have
the same production choices but disjoint regions, as the
parse tree t with the same production choices and in which
the region of each node in t is the union of the regions of
its corresponding nodes in t1 and t2.
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3.2. INFERSSPN

Pseudocode for our algorithm, INFERSSPN, is presented
in Algorithm 1. INFERSSPN is an iterative bottom-up al-
gorithm based on graph cuts (Kolmogorov & Zabih, 2004)
that efficiently and provably converges to a local minimum
of the energy function. Each iteration of INFERSSPN im-
proves the current parse t̂ in a flexible manner that allows
any of its productions or regions (equivalently, labelings)
to change.

If an initial parse t̂ is provided, INFERSSPN first deter-
mines the regions for each symbol and their hierarchical
relationships (line 5) in a downward pass through t̂. If not,
then each symbol is assigned the region containing the en-
tire image (line 6), which serves as a powerful initialization
method. INFERSSPN then iteratively constructs a parse for
each production of each symbol for each of its regions in
a single upward pass through the grammar from the termi-
nals to the start symbol (line 7). The parse of a production
v : X → Y Z for region RX is constructed on line 11
by fusing the previously-computed parses of Y and Z for
the child regions of RX (i.e., its subregions in t̂). If RX

has no children, then it was not in t̂ and we can use the
parses of any region of Y and Z (since they parse the en-
tire image). Most symbols only have a single region, so no
choice is required, but in the rare case of multiple regions,
one can be chosen by estimating a bound on its energy or
even randomly, as this choice does not affect convergence.
In our experiments, we also set the region of each symbol
that is not in t̂ as the region of its closest ancestor in t̂. IN-
FERSSPN then parses the remainder of the image RX as
v given the parse ofRX as v, meaning that the θvpq(yvp , y

v
q )

terms for edges between pixels p ∈ RX and q ∈ RX are
added to the unary θvp(yvp) during fusion, since the label yvq
is known. The parse of the production u with the lowest
energy over RX is then chosen as its parse (line 13) and
the union of the parses of u over RX and RX provides
the parse of the full image for this region. Convergence
would still be guaranteed if INFERSSPN did not parseRX

for each production, however, the behavior of the algorithm
would be largely degraded as regions would not be able to
grow or change in further iterations. At the end of the up-
ward pass, the parse of the image t̂ is simply the parse of
the start symbol’s single region, which contains all pixels
(line 14).

3.3. Analysis

As shown in Theorem 1, INFERSSPN always converges to
a local minimum of the energy function. Like other move-
making algorithms, INFERSSPN explores an exponentially
large set of moves at each step, so the returned local min-
imum is much better than those returned by more local
procedures (Boykov et al., 2001), such as max-product be-

lief propagation. Further, we observe convergence in fewer
than ten iterations in all experiments, with the majority of
the energy improvement occurring in the first iteration.
Theorem 1. Given a parse (tree) t̂ of S over the entire im-
age with energy E(t̂), each iteration of INFERSSPN con-
structs a parse (tree) t of S over the entire image with en-
ergy E(t) ≤ E(t̂) and, since the minimum energy of an
image parse is finite, INFERSSPN will always converge.

As shown in Proposition 2, each iteration of INFERSSPN
has worst-case complexity O(|G|c(n)n), where n is the
number of pixels in the image and c(n) is the complexity
of the underlying graph cut algorithm used, which is worst-
case low-order polynomial, but nearly linear-time in prac-
tice (Boykov & Kolmogorov, 2004; Boykov et al., 2001).
The additional factor of n is due to the number of regions
of each symbol, which in the worst case can be O(n) but
in practice is almost always a small constant (often one).
Thus, INFERSSPN typically runs in time O(|G|c(n)).
Proposition 2. Let c(n) be the time complexity of com-
puting a graph cut on n pixels and |G| be the size of the
grammar defining the SSPN. Then each iteration of IN-
FERSSPN takes time O(|G|c(n)n).

Note that a straightforward application of α-expansion to
image parsing that uses one label for every possible parse
in the grammar requires an exponential number of labels in
general, and thus has exponential time complexity.

INFERSSPN can be extended to productions with more
than two constituents by simply replacing the internal
graph cut used to fuse subtrees with a multi-label algorithm
such as α-expansion. INFERSSPN would still converge be-
cause each subtree would still never decrease in energy. An
algorithm such as QPBO (Kolmogorov & Rother, 2007)
could also be used, which would relax the submodularity
requirement.

4. Learning
An SSPN is parameterized by its production costs ws =
{wv : v ∈ R}, which are the log-space version of an
SPN’s weights, and its MRF weights wm. The parame-
ters of an SSPN can be learned in a multitude of ways,
but we propose here an approach that builds on the insight
of Section 3: given the regions of each symbol an SSPN
reduces to an SPN, whereas given the production choices
an SSPN reduces to an MRF. Similarly, we propose to
learn SSPN parameters using an alternating-minimization-
style approach like ADMM (Boyd et al., 2011), where the
SPN weights ws are first updated with the MRF parame-
ters held fixed and then the MRF weights wm are updated
with the SPN weights held fixed, with this process iterat-
ing until convergence. While it is possible to learn ws and
wm simultaneously, our preliminary investigations indicate
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Figure 3. The energy of the returned parse and the total running time when testing inference for each of belief propagation, α-expansion,
and INFERSSPN when varying (a) boundary strength, (b) grammar height, and (c) number of productions. Each data point is the average
value over (the same) 10 images. Missing data points indicate out of memory errors. Figures 1, 2, and 3 in the supplement show all
results for each experiment

that learning them separately provides a more stable ap-
proach, where symbols are first associated with different
image patches (or features) by updating ws, and then each
symbol’s region and appearance weights wm are fit to that
symbol’s image patches (or features).

For weight updating, both SPNs and MRFs can be learned
both generatively and discriminatively, and SSPNs are no
different; we focus here on the discriminative case, but
the generative case is similar. As with both SPNs and
MRFs, the derivative of the conditional log-likelihood of
an SSPN with respect to a weight wi is simply the differ-
ence of the expected count of the corresponding produc-
tion (or pixel or edge) over all parse trees that are com-
patible with both the labels and the image and the ex-
pected count over parse trees compatible with only the
image; i.e., ∂

∂wi
log pw(y|I) = Et∈Tw(y,I)[ni(t)|y, I] −

Et′∈Tw(I)[ni(t
′)|I], where y are the query variables,

Tw(y, I) and Tw(I) are the sets of parse trees compatible
with their respective arguments, and ni(t) is the count of
weight wi in t. Unfortunately, since no datasets of parsed
images exist to train on, both expectations are intractable.
However, an effective approximation to the second expec-
tation is to simply use the counts from the MAP parse,
which is accurate if it has much of the probability mass;
this is known as voted perceptron (Collins, 2002) and has
been used to efficiently train both MRFs (Singla & Domin-
gos, 2005) and SPNs (Gens & Domingos, 2012). In SPNs,
both expectations are tractable but are still replaced with
their MAP state to overcome vanishing gradients. We pro-
pose to extend this method to SSPNs, and approximate
each expectation with the counts from its respective MAP
parse, as found by INFERSSPN. The gradient update is
then simply ∂

∂wi
log pw(y|I) ≈ ni(t

∗
yI) − ni(t∗I), where

t∗· = arg mint∈Tw(·)E(t, I).

5. Experiments
We evaluated SSPNs by parsing images from the Stanford
background dataset (SBD) (Gould et al., 2009) under two
different settings, both using features from DeepLab (Chen
et al., 2015; 2016), a state-of-the-art convolutional seman-
tic segmentation approach. In the first, we compare the per-
formance of INFERSSPN to α-expansion and belief prop-
agation in an inference-only setting. In the second, we
induce grammars and compare the segmentation perfor-
mance of SSPNs with DeepLab and DeepLab plus a sub-
modular MRF.

Inference evaluation. To evaluate the inference perfor-
mance of INFERSSPN, we programmatically generated
grammars while varying the height, number of productions
per nonterminal, and strength of the boundary (pairwise)
terms. Note that these grammars are not learned and sim-
ply provide a common basis on which to compare infer-
ence performance. Each algorithm is given the same gram-
mar and the same features (from DeepLab). Evaluation is
performed on the training images in order to separate in-
ference performance from generalization performance. We
compared INFERSSPN to α-expansion on a flat pairwise
MRF containing a label for each possible parse path in the
grammar and to max-product belief propagation (BP) on
a multi-level (3-D) pairwise MRF with the same height as
each grammar. We used a single weight wBF to param-
eterize the MRF of every production in conjunction with
the standard contrast-dependent boundary term of Shotton
et al. (2006). Further details on these models and the MRF
parameterization are provided in the supplement. We note
that, due to the flat encoding, α-expansion must iterate over
an exponential number of labels. However, once it con-
verges, its energy is within a constant factor of the global
minimum (Boykov et al., 2001) and thus serves as a good
surrogate for the true global minimum, which is intractable
to compute.
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Increasing the boundary strength of an MRF makes infer-
ence more challenging, as individual pixel labels cannot be
flipped easily without large side effects. Figure 3a plots the
average minimum energy of the parses found by each al-
gorithm versus wBF (with log-scale x-axis). INFERSSPN
returns comparable or better parses to both BP and α-
expansion and in less time, as shown in Figure 1 in the
supplement. Similarly, increasing the height of the gram-
mar can make inference far more challenging, as the num-
ber of parse paths in the grammar increases exponentially
with height. Here, we set wBF to 20 and plot inference time
versus grammar height in Figure 3b. As expected from our
theoretical results, inference time for INFERSSPN scales
linearly with height, whereas it scales exponentially for
both α-expansion and BP. Again, the energies and accu-
racies of the parses returned by INFERSSPN are nearly
identical to those of α-expansion, as shown in Figure 2 in
the supplement. Finally, the number of paths in the gram-
mar is also directly affected by the number of productions
per symbol. We again set wBF to 20 and plot inference
time versus number of productions per nonterminal in Fig-
ure 3c. Again, INFERSSPN returns equivalent parses to
α-expansion and BP in much less time.

Model evaluation. While we do not yet have full SSPN
learning in place – mainly due to the difficulty of full-
fledged grammar induction and the lack of training data –
we are currently working on it. Instead, in order to evaluate
the benefits of SSPNs as a model for scene understanding,
we induced grammars on the SBD test images and com-
puted the mean pixel accuracy of the terminal labeling (i.e.,
the per-pixel semantic labels) from the parse tree returned
by INFERSSPN. These results and those of DeepLab alone
and DeepLab plus a flat (planar) MRF are shown in Table 1,
which shows a 20% relative decrease in error for SSPNs,
which is quite remarkable given how well the DeepLab fea-
tures do on their own and how little the flat MRF helps. The
goal of this test is not to establish a new state-of-the-art re-
sult on this dataset (although all three of these numbers are
well-above state of the art), since the SSPNs were induced
on subsets of the data, with some oracle information; rather,
the goal is to show the promise of SSPNs without requir-
ing full-fledged learning. In particular, to generate each
image grammar we first over-segmented each image at 4
different levels of granularity using the method and code
of Isola et al. (2014) and intersected the most fine-grained
of these with the label regions. For each image, we took
its over-segmentations and those for four other randomly
chosen images and created a grammar with a symbol for
each segment, where each terminal region produced only
those labels in its region. Finally, we added productions
between overlapping segments at different granularity lev-
els for each image and then randomly added productions
between cross-image segments with overlapping regions.

On average, each induced grammar had 860 symbols and
1250 productions with 5 constituents. While the induced
SSPNs benefit from a small amount of oracle information
– in the sense that the induced grammar can only produce
terminal labels that are possible at that pixel (much like in
the experiments of Russell et al. (2010)) – they also suffer
from not being learned, since all production costs were zero
and the same MRF parameters were used across all images.
Learning these should only further improve performance;
in particular, note that the extra per-pixel label information
is exactly what would be learned by a good learning algo-
rithm. Thus, we believe that this result demonstrates the
promise and power of SSPNs and the benefits of reasoning
about higher-level relationships for scene understanding.

Table 1. Mean pixel accuracy on 143 test images of the SBD.

DeepLab DeepLab+MRF SSPN(+oracle)

87.46 87.60 90.03

6. Conclusion
This paper proposed submodular sum-product networks
(SSPNs), a novel extension of sum-product networks that
combines their expressivity and power with the efficient
combinatorial optimization capabilities of submodular
Markov random fields. SSPNs can be understood as an
instantiation of an image grammar in which all possible
parses of an image over arbitrary shapes are represented.
Despite this complexity, we presented INFERSSPN, a
move-making algorithm that exploits submodularity in or-
der to find the (approximate) MAP state of an SSPN, which
is equivalent to finding the (approximate) optimal parse
of an image. Analytically, we showed that INFERSSPN
is both very efficient – each iteration takes time linear in
the size of the grammar, the image, and the complexity
of one graph cut – and convergent. Empirically, we
showed that INFERSSPN achieves accuracies and energies
comparable to α-expansion, which returns optima within
a constant factor of the global optimum, while taking
exponentially less time to do so, and that it shows great
promise for scene understanding. We have begun work on
learning SSPNs from data. This is an exciting avenue of
research because many recent works have demonstrated
that learning both the structure and parameters of SPNs
from data is feasible and effective, despite the well-known
difficulty of grammar induction. We also plan to apply
SSPNs to activity recognition, social network modeling,
and probabilistic knowledge bases.
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mizing the spread of influence through a social network.
In Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Washington, D.C., 2003. ACM.

http://arxiv.org/abs/1412.7062
http://arxiv.org/abs/1412.7062
http://arxiv.org/abs/1412.7062


Unifying Sum-Product Networks and Submodular Fields

Kolmogorov, Vladimir and Rother, Carsten. Minimizing
nonsubmodular functions with graph cuts - a review.
IEEE transactions on pattern analysis and machine in-
telligence, 29(7):1274–9, 2007.

Kolmogorov, Vladimir and Zabih, Ramin. What energy
functions can be minimized via graph cuts? IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26
(2):147–159, 2004.

Komodakis, Nikos, Tziritas, Georgios, and Paragios,
Nikos. Fast, approximately optimal solutions for sin-
gle and dynamic MRFs. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, 2007.

Lempitsky, Victor, Rother, Carsten, Roth, Stefan, and
Blake, Andrew. Fusion moves for Markov random field
optimization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(8):1392–1405, 2010.

Lempitsky, Victor, Vedaldi, Andrea, and Zisserman, An-
drew. A pylon model for semantic segmentation. In
Neural Information Processing Systems, pp. 1–9, 2011.

Mossel, Elchanan and Roch, Sebastien. On the Submodu-
larity of Influence in Social Networks. In Symposium on
Theory of Computing 2007, pp. 128–134, 2007.

Poon, Hoifung and Domingos, Pedro. Sum-product net-
works: A new deep architecture. In Proceedings of
the 27th Conference on Uncertainty in Artificial Intel-
ligence, pp. 337–346. AUAI Press, 2011.
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