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1. Additional model details
1.1. SSPN to SPN conversion

An SSPN defines an SPN containing a sum node for each
possible region of each nonterminal, a product node for
each segmentation of each production of each possible re-
gion of each nonterminal, and a leaf function on the pix-
els of the image for each possible region of the image for
each terminal symbol. The children of the sum node s
for nonterminal Xs with region Rs are all product nodes
r with a production vr : Xs → Y1 . . . Yk and region
Rvr = Rs. Each product node corresponds to a label-
ing yvr of Rvr and the edge to its parent sum node has
weight exp(−wv−E(yvr ,Rvr )). The children of product
node r are the sum or leaf nodes with matching regions that
correspond to the constituent nonterminals or terminals of
vr, respectively. Note that this underlying SPN is decom-
posable, but not smooth. However, (Friesen & Domingos,
2016) showed that smoothness was not a necessary condi-
tion for tractable inference and that no corrective factor is
necessary when operating in the min-sum semiring, which
is what is used for finding the (approximate) optimal parse
of an SSPN.

A key benefit of SSPNs in comparison to previous
grammar-based approaches is that regions can have arbi-
trary shapes and are not restricted to a small class of shapes
such as rectangles (Poon & Domingos, 2011; Zhao & Zhu,
2011). This flexibility is important when parsing images,
as real-world objects and abstractions can take any shape,
but it comes with a combinatorial explosion of possible
parses. However, by exploiting submodularity, we are able
to develop an efficient inference algorithm for SSPNs, al-
lowing us to efficiently parse images into a hierarchy of
arbitrarily-shaped regions and objects, yielding a very ex-
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pressive model class. This efficiency is despite the size of
the underlying SSPN, which is in general far too large to
explicitly instantiate.

2. Proofs
Proposition 1. The energy E(v, t1, t2,y

v) of the fusion of
parse trees t1, t2 over region R with head symbols Y1, Y2
for a production v : X → Y1Y2 is submodular.

Proof. E(v, t1, t2) is submodular as long as
2 · θvpq(Y1, Y2) ≥ θt1pq + θt2pq , where θtpq =∑

u∈t θ
u
pq(yup , y

u
q ) · [(p, q) ∈ Eu]. Let every submod-

ular MRF energy Eu(yu,R) be in normal form such
that θupq(y, y) = 0 and θupq(yup , y

u
q ) ≥ 0 for all labels

y, yup , y
u
q ∈ Yu, where any submodular energy can be

reparameterized into normal form in time linear in the
region size (Kolmogorov & Rother, 2007). Then, since
θtpq can contain at most one production c ∈ t such
that ycp 6= ycq , it follows that θtpq contains at most one
non-zero term, in which case θtpq = θcpq . Finally, since
θvpq(yvp , y

v
q ) ≥ θcpq(ycp, y

c
q) for c any possible descendant

of v and for all labelings, then θvpq(Y1, Y2) ≥ θtipq for
i ∈ {1, 2} and the claim follows.

The following result shows how INFERSSPN can improve
a parse tree while ensuring that the energy of that parse tree
never gets worse.

Lemma 1. Given a labeling yv which fuses parse trees
t1, t2 into t with root production v, energy E(t,R) =
E(v, t1, t2,y

v), and subtree regions R1 ∩ R2 = ∅ de-
fined by yv , then any improvement ∆ in E(t1,R1) also
improves E(t,R) by at least ∆, regardless of any change
in E(t1,R\R1).

Proof. Since the optimal fusion can be found exactly, and
the energy of the current labeling yv has improved by ∆,
the optimal fusion will have improved by at least ∆.

Proposition 2. Let c(n) be the time complexity of comput-
ing a graph cut on n pixels and |G| be the size of the gram-
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mar defining the SSPN, then each iteration of INFERSSPN
takes time O(|G|c(n)n).

Proof. Let k be the number of productions per nontermi-
nal symbol and N be the nonterminals. The three main
loops of the algorithm have complexity |N |, n (because
there can be at most n regions and the regions are dis-
joint), and k, respectively. For line 8, the choice of parses
for productions in t̂ takes constant time, and the rest can
be chosen arbitrarily. For lines 9-10, the fusion of a re-
gion R has complexity O(|R| + c(|R|) = O(c(|R|)), so
the worst-case complexity of the inner loop is when R is
empty or the full image, giving complexity O(c(n)). Thus,
the total complexity of each iteration of INFERSSPN is
O(|N |k · c(n) · n) = O(|G|c(n)n).

Theorem 1. Given a parse (tree) t̂ of S over the entire im-
age with energy E(t̂), each iteration of INFERSSPN con-
structs a parse (tree) t of S over the entire image with en-
ergy E(t) ≤ E(t̂), and since the minimum energy of an
image parse is finite, INFERSSPN will always converge.

Proof. We will prove by induction that for all nodes n ∈ t̂
with corresponding production v : X → Y Z , region RX ,
subtree t̂RX

over region RX , and child subtrees t̂RY
, t̂RZ

over regions RY ,RZ , that E(tRX
) ≤ E(t̂RX

) after one
iteration. Since the start symbol S has only one region con-
taining the entire image, this proves the claim.
Base case. Let t̂RX

be a subtree with region RX and pro-
duction v : X → Y containing only a single terminal
child and let {ui = X → Yi} be the set of productions
of X (where such a t̂RX

must exist because the grammar
is non-recursive and terminates). By definition, tv = t̂RX

,
where tv is the new parse of RX as v, because terminal
parses do not change for the same region. Then, since
tRX

= arg minui
E(tui) and v ∈ {ui}, it immediately

follows that E(tRX
) ≤ E(t̂RX

) and the claim holds.
Induction step. Let n ∈ t̂ be a node in t̂ with corre-
sponding production v : X → Y Z, region RX , sub-
tree t̂RX

over region RX , and child subtrees t̂RY
, t̂RZ

over regions RY ,RZ , such that RY ∪ RZ = RX and
RY ∩ RZ = ∅, and suppose that E(tRY

) ≤ E(t̂RY
)

and E(tRZ
) ≤ E(t̂RZ

). From Lemma 1, it follows that
the parse tv computed from fusing tRY

and tRZ
in RX

as v has energy E(tv) ≤ E(t̂RX
) (since the fusion can

always choose the same labeling as in t̂RY
). Then, since

tRX
= arg minu∈{uX :head(uX)=X}E(tu), where {uX} are

the productions of X , we have that E(tRX
) ≤ E(tv) and

thus E(tRX
) ≤ E(t̂RX

) and the claim follows.

3. Additional experimental details and results
3.1. Additional figures

Figures 1, 2, and 3 show the full matrix of the performance
of INFERSSPN, α-expansion, and BP for each measure
(minimum energy found, parsing time taken, and mean av-
erage pixel accuracy) of the three scenarios (varying the
strength of boundary terms, increasing the grammar height,
and increasing the number of productions for each nonter-
minal) described in the main paper.

3.2. MRF segmentation details

As discussed in the main paper, the energy of each
segmentation of a region for a given production is de-
fined by a MRF E(yv,Rv) =

∑
p∈Rv

θvp(yvp ;w) +∑
(p,q)∈Ev θ

v
pq(yvp , y

v
q ;w). The unary and pairwise terms in

E can be defined arbitrarily, as long as the resulting energy
is submodular. In our experiments, we define the unary
terms for terminals T ∈ Σ as a linear function of the image
features θvp(yvp = T ;w) = w>T φ

U
p , where φUp is a fea-

ture vector representing the local appearance of pixel p.
Unary terms for nonterminals X ∈ N can be defined as
θvp(yvp = X;w) = wv

pX , where wv
pX is a (learnable) pa-

rameter that specifies how likely this pixel is to be labeled
as X . This allows each production to encode the regions of
the image associated with each of its constituents.

The pairwise terms are also quite flexible, but in our ex-
periments we use the standard contrast-dependent pairwise
boundary potential (e.g., Shotton et al. (2006)) defined for
each production v and each pair of adjacent pixels p, q as
θvpq(yvp , y

v
q ;w) = wBF

v exp(−β−1||φBp −φBq ||2) · [yvp 6= yvq ],
where β is half the average image contrast between all ad-
jacent pixels in an image, wBF

v is the boundary factor that
controls the relative cost of this term for each production,
φBp is the pairwise per-pixel feature vector, and [·] is the
indicator function, which has value 1 when its argument is
true and is 0 otherwise.

3.3. α-expansion and 3-D MRF details

We compared INFERSSPN to running α-expansion on a
flat pairwise MRF and to max-product belief propagation
over a multi-level (3-D) pairwise grid MRF. Each label of
the flat MRF corresponds to a possible path in the grammar
from the start symbol to a production to one of its con-
stituent symbols, etc, until reaching a terminal. In general,
the number of such paths is exponential in the height of
the grammar. The unary terms are the sum of unary terms
along the path and the pairwise term for a pair of labels is
the pairwise term of the first production at which their con-
stituents differ. For any two labels with paths that choose
a different production of the same symbol (and have the
same path from the start symbol) we assign infinite cost to
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Figure 1. The (a) best energy, (b) total running time, and (c) resulting semantic segmentation accuracy (mean average pixel accuracy)
for belief propagation, α-expansion, and INFERSSPN when varying boundary strength. Each data point is the average value over (the
same) 10 images.
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Figure 2. The (a) best energy, (b) total running time, and (c) resulting semantic segmentation accuracy (mean average pixel accuracy) for
belief propagation, α-expansion, and INFERSSPN when varying grammar height. Each data point is the average value over (the same)
10 images. Missing data points for α-expansion indicate that it ran out of memory. Missing data points for BP indicate that it returned
infinite energy (left). Low accuracies for grammar height 0 are a result of the grammar being insufficiently expressive.
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Figure 3. The (a) best energy, (b) total running time, and (c) resulting semantic segmentation accuracy (mean average pixel accuracy) for
belief propagation, α-expansion, and INFERSSPN when varying grammar height. Each data point is the average value over (the same)
10 images. Missing data points for BP indicate that it returned infinite energy (left).

enforce the restriction that an object can only have a single
production of it into constituents. Note that after conver-
gence α-expansion is guaranteed to be within a constant
factor of the global minimum energy (Boykov et al., 2001)
and thus serves as a good surrogate for the true global min-
imum, which is intractable to compute. The multi-layer
MRF is constructed similarly. The number of levels in the
MRF is equal to the height of the DAG corresponding to
the grammar used. The labels at a particular level of the

MRF are all (production, constituent) pairs that can occur
at this height in the grammar. The pairwise term between
the same pixel in two levels is 0 when the parent label’s
constituent equals the child label’s production head, and∞
otherwise. Pairwise terms within a layer are defined as in
the flat MRF with infinite cost for incompatible labels (i.e.,
two neighboring pixels parsed as different productions of
the same symbol), unless two copies of that nonterminal
could be produced at that level by the grammar.
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3.4. Details on inference evaluation experiments

We compared the three inference algorithms by varying
three different parameters: boundary strength (strength of
pairwise terms), grammar height, and number of produc-
tions per nonterminal. Each grammar contained a start
symbol, multiple layers of nonterminals, and a final layer of
nonterminals in one-to-one correspondence with the eight
terminal symbols, each of which had a single production
that produces a region of pixels. The start symbol had one
production for each pair of symbols in the layer below it,
and the last nonterminal layer (ignoring the nonterminals
for the labels) had productions for each pair of labels, dis-
tributed uniformly over this last nonterminal layer. The
productions between intermediate layers are generated ran-
domly.

All experiments were run on the same computer running a
dual 20-core 2.2 GHz Intel Xeon E5-2698 and 512 GB of
RAM. Each algorithm was limited to a single thread.

Boundary strength. Increasing the boundary strength of
an MRF makes inference more challenging, as individual
pixel labels cannot be easily flipped without large side ef-
fects. To test this, we constructed a grammar as above with
2 layers of nonterminals (not including the start symbol),
each containing 3 nonterminal symbols with 4 binary pro-
ductions to the next layer. We used a single weight wBF
to parameterize all pairwise (boundary) terms in the MRF
of every production. Figure 1 plots the mean average pixel
accuracy of the parses returned by each algorithm vs. wBF
(the x-axis is log-scale). INFERSSPN returns parses with
almost identical accuracy (and energy) to α-expansion. BP
also returns comparable accuracies, but almost always re-
turns invalid parses with infinite energy (if it converges at
all) that contain multiple productions of the same object or
a production of a symbol Y even though the pixel is labeled
as symbol X.

Grammar height. In general, the number of paths in the
grammar is exponential in its height, so the height of the
grammar controls the complexity of inference and thus the
difficulty of parsing images. For this experiment, we set
wBF to 20 and constructed a grammar with four nontermi-
nals per layer, each with three binary productions to the
next layer. Figure 2 shows the effect of grammar height on
total inference time (to convergence or a maximum num-
ber of iterations, whichever first occurred). As expected
from Proposition 1, the time taken for INFERSSPN scales
linearly with the height of the grammar, which is within a
constant factor of the size of the grammar when all other
parameters are fixed. Similarly, inference time for both
α-expansion and BP scaled exponentially with the height
of the grammar because the number of labels for both in-
creases combinatorially. Again, the energies and corre-
sponding accuracies achieved by INFERSSPN were nearly

identical to those of α-expansion (see Figure 2, below).

Productions per nonterminal. The number of paths in the
grammar is also directly affected by the number of produc-
tions per symbol. For this experiment, we set wBF to 20
and constructed a grammar with 2 layers of nonterminals,
each with 4 nonterminal symbols. Figure 3 shows the effect
of increasing the number of productions per nonterminal,
which again demonstrates that INFERSSPN is far more ef-
ficient than either α-expansion or BP as the complexity of
the grammar increases, while still finding comparable so-
lutions (see Figure 3, below).

3.5. Details on model evaluation and grammar
induction

To induce a grammar for a particular image, we first con-
structed 4 segmentations of the image at increasing levels
of granularity using the method of Isola et al. (2014) and
then intersecting these regions with the regions from the
true labels. We then did the same for 4 other images cho-
sen uniformly at random. The segments from these 5 im-
ages define the symbols of the induced grammar and the re-
gions of the segments determine the regions of the symbols
in the per-pixel MRF weights. We next created produc-
tions between overlapping segments at each neighboring
levels of segmentation granularity within the same image.
We then generated 3 productions for each symbol by ran-
domly selecting 4 regions in the next level of segmentation
granularity across all images that overlapped with the head
symbol’s region. Finally, we set the produced terminals of
the finest-granularity regions to be those labels that were
expressed anywhere in their region, as these form the bot-
tom of the grammar. For the MRF weights, we set wBF to
5 for all productions and all edges, but used the contrast-
dependent pairwise boundary potential defined above to
control the strength of the pairwise terms. The produced
DeepLab features from the layer preceding the softmax (in
the DeepLab architecture) were used as the per-pixel unary
costs for productions into the corresponding terminal sym-
bol. Production costs were all set to 0, so the energy is en-
tirely determined by the per-pixel unary costs, the pairwise
costs, and the structure of the grammar.
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