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Nonconvex Optimization RDIS: Approximate global minimization of a nonconvex tunction
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decomposition algorithms can explore a combinatorially large space in sub- Input: Objective function f{x), initial state x’, approximation error ¢, subspace optimizer S.
exponential time but only exist in discrete domains (e.g., SAT, model counting, Output. f,,,, such that [f,,, — f| < €, where f* is the global minimum of fx).
probabilistic inference). o oe—mmtoareee—
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We introduce RDIS, a local, recursive decomposition algorithm for continuous . . 7 (X . . ~
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optimization. Existing continuous methods are non-recursive, and require that - y " < Xg \
. . . that induce local decompaosition. /. \ Ko \
the decomposition be pre-specified, global, and static. However, many - | | } X, X;s ‘,
problems exhibit local structure (i.e., dependencies change as a function of the * Any heuristic is possible (e.g., VSIDS). '\ X, i Y X.. y X1 )
state space). « We use hypergraph partitioning RS X, 1\ g JPtal
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Recursive decomposition allows RDIS to exploit local structure. We show it is el NS T
able to find the global minimum i_n e>.<ponentially less time t.han standarq | Q Choose and set values X =V, Q_/.
algorithms for nonconvex optimization for a class of functions that exhibit local Q
structure. « Use Stochoose v, < S(f(x,x=v)). v
« S could be any nonconvex optimizer,

Other benefits of RDIS include: including grid search, EM, or L-BFGS. We
« RDIS optimizes small, independent blocks of variables, resulting in updates use conjugate gradient descent and

that are faster, more consistent, and move further. Levenberg-Marquardt with restarts.
» RDIS simplifies the objective function, resulting in both reduced computation * Remove nodes corresponding to

and smoothing. assigned variables from graph.
» Locality guarantees more decomposition than alternatives. Q Slmpllfy 1 X=V,X, )
- Nested restart behavior plus local decomposition leads to exponential » Set terms (or factors) with narrow

reductions in complexity while retaining global convergence guarantees. bounds to constants (locally).
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Local StrUCture assigned terms (or factors) from graph.
Goal is to minimize f{x) for € R . Fully decomposable functions, fix) = X fi(x,), ,/
are easy to optimize because min f{x) = X, min fy(x,), but rare. Q Decompose f(x=v_,X ) I,’
Conversely, non-decomposed functions require exponentially more exploration * Divide dependency graph into its '\\
than the decomposed function. For example, consider f{x) = 3. fi(x,) and let M, connected components.
be the modes of f. Then the number of modes to explore is IMl = Z. IM]. » Connected components can be
However, if fis instead optimized directly, then IT. IM| modes must be explored, optimized independently.
which is exponential in .
To maximize decomposition, we define the following types of structure. Q Recurse
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Definition 1. fix) is globally decomposable if there exists a partition x = {x,, x,, x;} connected component.

such that, for every value a € dom(x;), fla, x,, x;) = fi(a, x,) + f5(a, x;). » Globally optimizes fix.=v, x )

Definition 2. fix) is locally decomposable in the subspace x, = a if there exists a \
partition X = {X], X5, )C3} such ’[hatf(a, X5, .X3) :f](a, X2) +f2(d, x3). Q Loop to@ untll dOne A

Definition 3. f{x) is approximately locally decomposable in a neighbourhood of « Either restart or terminate upon
the subspace x, = a if there exists a partition x = {x,, x,, x;} and §, € = 0 such that convergence.
if |lb—all < & then | fib, x,, x;) — [ fi(b, x,) + f>(b, x3) | | < €.

Theoretical Results Experimental Results
At each recursion level, let @ be the number of variables chosen, k > I be the Structure from Motion Protein Folding — Continuous Sidechain Placement
number of independent sub-functions the function decomposes into, and §(d) be ||Bundle adjustment requires minimizing the squared error between a set of Task is to predict the placement of the protein side-chains when the
the number of iterations required for the subspace optimizer to find the global 2-D image points and a projection of fitted 3-D points from a scene’s backbone atoms are fixed. This is equivalent to finding the MAP
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Proposition 1. The time complexity of RDIS is O Ef(d) k . ———————————————#—— | conformations are Boltzmann distributed.
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